SIMBAD references

2018A&A...615A..10M - Astronomy and Astrophysics, volume 615A, 10-10 (2018/7-1)

Combined dynamical effects of the bar and spiral arms in a Galaxy model. Application to the solar neighbourhood.

MICHTCHENKO T.A., LEPINE J.R.D., BARROS D.A. and VIEIRA R.S.S.

Abstract (from CDS):


Context. Observational data indicate that the Milky Way is a barred spiral galaxy. Computation facilities and availability of data from Galactic surveys stimulate the appearance of models of the Galactic structure, however further efforts are needed to build dynamical models containing both spiral arms and the central bar/bulge.
Aims. We expand the study of the stellar dynamics in the Galaxy by adding the bar/bulge component to a model with spiral arms introduced in one of our previous publications. The model is tested by applying it to the solar neighbourhood, where observational data are more precise.
Methods. We model analytically the potential of the Galaxy to derive the force field in its equatorial plane. The model comprises an axisymmetric disc derived from the observed rotation curve, four spiral arms with Gaussian-shaped groove profiles, and a classical elongated/oblate ellipsoidal bar/bulge structure. The parameters describing the bar/bulge are constrained by observations and the stellar dynamics, and their possible limits are determined.
Results. A basic model results in a bar of 2.9kpc in length, with a mass of the order of a few 109M (which does not include the axisymmetric part of the bulge, which has a mass of about 1010M). The size and orientation of the bar are also restricted by the position of masers with Very Long Baseline Interferometry (VLBI). The bar's rotation speed is constrained to Ωbar<50km/s/kpc taking into account the allowed mass range.
Conclusions. We conclude that our basic model is compatible with observations and with the dynamical constraints. The model explains simultaneously the bulk of the main moving groups, associated here with the spiral corotation resonance, and the Hercules stream, associated with several inner high-order spiral resonances; in particular, with the 8/1 resonance. From the dynamical constraints on the bar's angular speed, it is unlikely that the bar's outer Lindblad resonance (OLR) lies near the solar circle; moreover, its proximity would compromise the stability of the local arm structure.

Abstract Copyright: © ESO 2018

Journal keyword(s): galaxies: spiral - Galaxy: kinematics and dynamics - solar neighborhood - methods: analytical - methods: numerical

Simbad objects: 13

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2018A&A...615A..10M and select 'bookmark this link' or equivalent in the popup menu


2019.12.08-13:46:25

© Université de Strasbourg/CNRS

    • Contact