SIMBAD references

2018A&A...620A..60C - Astronomy and Astrophysics, volume 620A, 60-60 (2018/12-1)

Planck's dusty GEMS. V. Molecular wind and clump stability in a strongly lensed star-forming galaxy at z = 2.2.

CANAMERAS R., NESVADBA N.P.H., LIMOUSIN M., DOLE H., KNEISSL R., KOENIG S., LE FLOC'H E., PETITPAS G. and SCOTT D.

Abstract (from CDS):

We report the discovery of a molecular wind signature from a massive intensely star-forming clump of a few 109M, in the strongly gravitationally lensed submillimeter galaxy "the Emerald" (PLCK_G165.7+49.0) at z=2.236. The Emerald is amongst the brightest high-redshift galaxies on the submillimeter sky, and was initially discovered with the Planck satellite. The system contains two magnificient structures with projected lengths of 28.5'' and 21'' formed by multiple, near-infrared arcs, falling behind a massive galaxy cluster at z=0.35, as well as an adjacent filament that has so far escaped discovery in other wavebands. We used HST/WFC3 and CFHT optical and near-infrared imaging together with IRAM and SMA interferometry of the CO(4-3) line and 850 µm dust emission to characterize the foreground lensing mass distribution, construct a lens model with LENSTOOL, and calculate gravitational magnification factors between 20 and 50 in most of the source. The majority of the star formation takes place within two massive star-forming clumps which are marginally gravitationally bound and embedded in a 9x1010M, fragmented disk with 20% gas fraction. The stellar continuum morphology is much smoother and also well resolved perpendicular to the magnification axis. One of the clumps shows a pronounced blue wing in the CO(4-3) line profile, which we interpret as a wind signature. The mass outflow rates are high enough for us to suspect that the clump might become unbound within a few tens of Myr, unless the outflowing gas can be replenished by gas accretion from the surrounding disk. The velocity offset of -200km/s is above the escape velocity of the clump, but not that of the galaxy overall, suggesting that much of this material might ultimately rain back onto the galaxy and contribute to fueling subsequent star formation.

Abstract Copyright: © ESO 2018

Journal keyword(s): galaxies: high-redshift - galaxies: evolution - galaxies: star formation - galaxies: ISM - infrared: galaxies - submillimeter: galaxies

Status in Simbad:  being processed

CDS comments: PLCK G165.7+49.0 is a misprint for [CNG2015] PLCK G165.7+67.0

Simbad objects: 12

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2018A&A...620A..60C and select 'bookmark this link' or equivalent in the popup menu


2019.12.06-07:28:21

© Université de Strasbourg/CNRS

    • Contact