SIMBAD references

2018ApJ...864L...3G - Astrophys. J., 864, L3-L3 (2018/September-1)

The minimum mass of rotating main-sequence stars and its impact on the nature of extended main-sequence turnoffs in intermediate-age star clusters in the Magellanic Clouds.

GOUDFROOIJ P., GIRARDI L., BELLINI A., BRESSAN A., CORRENTI M. and COSTA G.

Abstract (from CDS):

Extended main-sequence turnoffs (eMSTOs) are a common feature in color-magnitude diagrams (CMDs) of young and intermediate-age star clusters in the Magellanic Clouds. The nature of eMSTOs is still debated. The most popular scenarios are extended star formation and ranges of stellar rotation rates. Here, we study implications of a kink feature in the main sequence (MS) of young star clusters in the Large Magellanic Cloud (LMC). This kink shows up very clearly in new Hubble Space Telescope observations of the 700 Myr old cluster NGC 1831 and is located below the region in the CMD where multiple or wide MSs, which are known to occur in young clusters and thought to be due to varying rotation rates, merge together into a single MS. The kink occurs at an initial stellar mass of 1.45 ± 0.02 M; we posit that it represents a lower limit to the mass below which the effects of rotation on the energy output of stars are rendered negligible at the metallicity of these clusters. Evaluating the positions of stars with this initial mass in CMDs of massive LMC star clusters with ages of ∼1.7 Gyr that feature wide eMSTOs, we find that such stars are located in a region where the eMSTO is already significantly wider than the MS below it. This strongly suggests that stellar rotation cannot fully explain the wide extent of eMSTOs in massive intermediate-age clusters in the Magellanic Clouds. A distribution of stellar ages still seems necessary to explain the eMSTO phenomenon.

Abstract Copyright: © 2018. The American Astronomical Society. All rights reserved.

Journal keyword(s): globular clusters: individual: (NGC 1783, NGC 1806, NGC 1831, NGC 1846, NGC 1866) - stars: rotation

Simbad objects: 9

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2018ApJ...864L...3G and select 'bookmark this link' or equivalent in the popup menu


2019.10.20-04:01:06

© Université de Strasbourg/CNRS

    • Contact