SIMBAD references

2018MNRAS.476.4032V - Mon. Not. R. Astron. Soc., 476, 4032-4044 (2018/May-3)

Radiative transfer calculations of the diffuse ionized gas in disc galaxies with cosmic ray feedback.

VANDENBROUCKE B., WOOD K., GIRICHIDIS P., HILL A.S. and PETERS T.

Abstract (from CDS):

The large vertical scale heights of the diffuse ionized gas (DIG) in disc galaxies are challenging to model, as hydrodynamical models including only thermal feedback seem to be unable to support gas at these heights. In this paper, we use a three-dimensional Monte Carlo radiation transfer code to post-process disc simulations of the Simulating the Life-Cycle of Molecular Clouds project that include feedback by cosmic rays. We show that the more extended discs in simulations including cosmic ray feedback naturally lead to larger scale heights for the DIG which are more in line with observed scale heights. We also show that including a fiducial cosmic ray heating term in our model can help to increase the temperature as a function of disc scale height, but fails to reproduce observed DIG nitrogen and sulphur forbidden line intensities. We show that, to reproduce these line emissions, we require a heating mechanism that affects gas over a larger density range than is achieved by cosmic ray heating, which can be achieved by fine tuning the total luminosity of ionizing sources to get an appropriate ionizing spectrum as a function of scale height. This result sheds a new light on the relation between forbidden line emissions and temperature profiles for realistic DIG gas distributions.

Abstract Copyright: © 2018 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society

Journal keyword(s): radiative transfer - methods: numerical - cosmic rays - galaxies: ISM - galaxies: structure

Status at CDS:  

Simbad objects: 1

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2018MNRAS.476.4032V and select 'bookmark this link' or equivalent in the popup menu


2020.04.03-22:10:32

© Université de Strasbourg/CNRS

    • Contact