SIMBAD references

2019A&A...622A..69P - Astronomy and Astrophysics, volume 622A, 69-69 (2019/2-1)

The formation of solar-system analogs in young star clusters.


Abstract (from CDS):

The solar system was once rich in the short-lived radionuclide (SLR) 26Al but poor in 60Fe. Several models have been proposed to explain these anomalous abundances in SLRs, but none has been set within a self-consistent framework of the evolution of the solar system and its birth environment. The anomalous abundance in 26Al may have originated from the accreted material in the wind of a massive ≥20M Wolf-Rayet star, but the star could also have been a member of the parental star-cluster instead of an interloper or an older generation that enriched the proto-solar nebula. The protoplanetary disk at that time was already truncated around the Kuiper-cliff (at 45au) by encounters with other cluster members before it was enriched by the wind of the nearby Wolf-Rayet star. The supernova explosion of a nearby star, possibly but not necessarily the exploding Wolf-Rayet star, heated the disk to ≥1500 K, melting small dust grains and causing the encapsulation and preservation of 26Al in vitreous droplets. This supernova, and possibly several others, caused a further abrasion of the disk and led to its observed tilt of 5.6±1.2° with respect to the equatorial plane of the Sun. The abundance of 60Fe originates from a supernova shell, but its preservation results from a subsequent supernova. At least two supernovae are needed (one to deliver 60Fe and one to preserve it in the disk) to explain the observed characteristics of the solar system. The most probable birth cluster therefore has N=2500±300 stars and a radius of rvir=0.75±0.25pc. We conclude that systems equivalent to our solar system form in the Milky Way Galaxy at a rate of about 30Myr–1, in which case approximately 36000 solar-system analogs roam the Milky Way.

Abstract Copyright: © ESO 2019

Journal keyword(s): methods: numerical - stars: formation - planetary systems

Simbad objects: 8

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2019A&A...622A..69P and select 'bookmark this link' or equivalent in the popup menu


© Université de Strasbourg/CNRS

    • Contact