SIMBAD references

2019A&A...624A.120V - Astronomy and Astrophysics, volume 624A, 120-120 (2019/4-1)

Survivability of planetary systems in young and dense star clusters.

VAN ELTEREN A., PORTEGIES ZWART S., PELUPESSY I., CAI M.X. and McMILLAN S.L.W.

Abstract (from CDS):


Aims. We perform a simulation using the Astrophysical Multipurpose Software Environment of the Orion Trapezium star cluster in which the evolution of the stars and the dynamics of planetary systems are taken into account.
Methods. The initial conditions from earlier simulations were selected in which the size and mass distributions of the observed circumstellar disks in this cluster are satisfactorily reproduced. Four, five, or size planets per star were introduced in orbit around the 500 solar-like stars with a maximum orbital separation of 400 au.
Results. Our study focuses on the production of free-floating planets. A total of 357 become unbound from a total of 2522 planets in the initial conditions of the simulation. Of these, 281 leave the cluster within the crossing timescale of the star cluster; the others remain bound to the cluster as free-floating intra-cluster planets. Five of these free-floating intra-cluster planets are captured at a later time by another star.
Conclusions. The two main mechanisms by which planets are lost from their host star, ejection upon a strong encounter with another star or internal planetary scattering, drive the evaporation independent of planet mass of orbital separation at birth. The effect of small perturbations due to slow changes in the cluster potential are important for the evolution of planetary systems. In addition, the probability of a star to lose a planet is independent of the planet mass and independent of its initial orbital separation. As a consequence, the mass distribution of free-floating planets is indistinguishable from the mass distribution of planets bound to their host star.

Abstract Copyright: © ESO 2019

Journal keyword(s): methods: numerical - planets and satellites: dynamical evolution and stability - planet-star interactions - gravitation

Simbad objects: 7

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2019A&A...624A.120V and select 'bookmark this link' or equivalent in the popup menu


2021.01.17-13:47:47

© Université de Strasbourg/CNRS

    • Contact