SIMBAD references

2019A&A...625A.110H - Astronomy and Astrophysics, volume 625A, 110-110 (2019/5-1)

Hard and bright gamma-ray emission at the base of the Fermi bubbles.


Abstract (from CDS):

Context. The Fermi bubbles (FBs) are large gamma-ray emitting lobes extending up to 55° in latitude above and below the Galactic center (GC). Although the FBs were discovered eight years ago, their origin and the nature of the gamma-ray emission are still unresolved. Understanding the properties of the FBs near the Galactic plane may provide a clue to their origin. Previous analyses of the gamma-ray emission at the base of the FBs, what remains after subtraction of Galactic foregrounds, have shown an increased intensity compared to the FBs at high latitudes, a hard power-law spectrum without evidence of a cutoff up to approximately 1TeV, and a displacement of the emission to negative longitudes relative to the GC.
Aims. We analyze nine years of Fermi Large Area Telescope data in order to study in more detail than the previous analyses the gamma-ray emission at the base of the FBs, especially at energies above 10GeV.
Methods. We used a template analysis method to model the observed gamma-ray data and calculate the residual emission after subtraction of the expected foreground and background emission components. Since there are large uncertainties in the determination of the Galactic gamma-ray emission toward the GC, we used several methods to derive Galactic gamma-ray diffuse emission and the contribution from point sources to estimate the uncertainties in the emission at the base of the FBs.
Results. We confirm that the gamma-ray emission at the base of the FBs is well described by a simple power law up to 1TeV energies. The 95% confidence lower limit on the cutoff energy is about 500GeV. It has larger intensity than the FBs emission at high latitudes and is shifted to the west (negative longitudes) from the GC. If the emission at the base of the FBs is indeed connected to the high-latitude FBs, then the shift of the emission to negative longitudes disfavors models in which the FBs are created by the supermassive black hole at the GC. We find that the gamma-ray spectrum can be explained either by gamma rays produced in hadronic interactions or by leptonic inverse Compton scattering. In the hadronic scenario, the emission at the base of the FBs can be explained either by several hundred supernova remnants (SNRs) near the GC or by about ten SNRs at a distance of ∼1kpc. In the leptonic scenario, the necessary number of SNRs that can produce the required density of CR electrons is a factor of a few larger than in the hadronic scenario.

Abstract Copyright: © ESO 2019

Journal keyword(s): astroparticle physics - Galaxy: center - gamma rays: diffuse background - Galaxy: bulge - ISM: jets and outflows - ISM: bubbles

Simbad objects: 13

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2019A&A...625A.110H and select 'bookmark this link' or equivalent in the popup menu


© Université de Strasbourg/CNRS

    • Contact