SIMBAD references

2019A&A...629A..10B - Astronomy and Astrophysics, volume 629A, 10-10 (2019/9-1)

Fragmentation, rotation, and outflows in the high-mass star-forming region IRAS 23033+5951. A case study of the IRAM NOEMA large program CORE.

BOSCO F., BEUTHER H., AHMADI A., MOTTRAM J.C., KUIPER R., LINZ H., MAUD L., WINTERS J.M., HENNING T., FENG S., PETERS T., SEMENOV D., KLAASSEN P.D., SCHILKE P., URQUHART J.S., BELTRAN M.T., LUMSDEN S.L., LEURINI S., MOSCADELLI L., CESARONI R., SANCHEZ-MONGE A., PALAU A., PUDRITZ R., WYROWSKI F. and LONGMORE S.

Abstract (from CDS):


Context. The formation process of high-mass stars (>8M) is poorly constrained, particularly the effects of clump fragmentation creating multiple systems and the mechanism of mass accretion onto the cores.
Aims. We study the fragmentation of dense gas clumps, and trace the circumstellar rotation and outflows by analyzing observations of the high-mass (∼500M) star-forming region IRAS 23033+5951.
Methods. Using the Northern Extended Millimeter Array (NOEMA) in three configurations and the IRAM 30 m single-dish telescope at 220GHz, we probe the gas and dust emission at an angular resolution of ∼0.45'', corresponding to 1900 au.
Results. In the millimeter (mm) continuum emission, we identify a protostellar cluster with at least four mm-sources, where three of them show a significantly higher peak intensity well above a signal-to-noise ratio of 100. Hierarchical fragmentation from large to small spatial scales is discussed. Two fragments are embedded in rotating structures and drive molecular outflows, traced by 13CO (2-1) emission. The velocity profiles across two of the cores are similar to Keplerian but are missing the highest-velocity components close to the center of rotation, which is a common phenomena from observations like these, and other rotation scenarios are not excluded entirely. Position-velocity diagrams suggest protostellar masses of ∼6 and 19M. Rotational temperatures from fitting CH3CN (12K-11K) spectra are used for estimating the gas temperature and thereby also the disk stability against gravitational fragmentation, utilizing Toomre's Q parameter. Assuming that the candidate disk is in Keplerian rotation about the central stellar object and considering different disk inclination angles, we identify only one candidate disk as being unstable against gravitational instability caused by axisymmetric perturbations.
Conclusions. The dominant sources cover different evolutionary stages within the same maternal gas clump. The appearance of rotation and outflows of the cores are similar to those found in low-mass star-forming regions.

Abstract Copyright: © F. Bosco et al. 2019

Journal keyword(s): ISM: individual objects: IRAS 23033+5951 - ISM: kinematics and dynamics - ISM: jets and outflows - circumstellar matter - stars: formation - stars: massive

VizieR on-line data: <Available at CDS (J/A+A/629/A10): list.dat fits/*>

Status at CDS : Examining the need for a new acronym.

Simbad objects: 22

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2019A&A...629A..10B and select 'bookmark this link' or equivalent in the popup menu


2020.09.29-12:26:17

© Université de Strasbourg/CNRS

    • Contact