SIMBAD references

2019A&A...631A.111A - Astronomy and Astrophysics, volume 631A, 111-111 (2019/11-1)

Does magnetic field impact tidal dynamics inside the convective zone of low-mass stars along their evolution?

ASTOUL A., MATHIS S., BARUTEAU C., GALLET F., STRUGAREK A., AUGUSTSON K.C., BRUN A.S. and BOLMONT E.

Abstract (from CDS):


Context. The dissipation of the kinetic energy of wave-like tidal flows within the convective envelope of low-mass stars is one of the key physical mechanisms that shapes the orbital and rotational dynamics of short-period exoplanetary systems. Although low-mass stars are magnetically active objects, the question of how the star's magnetic field impacts large-scale tidal flows and the excitation, propagation and dissipation of tidal waves still remains open.
Aims. Our goal is to investigate the impact of stellar magnetism on the forcing of tidal waves, and their propagation and dissipation in the convective envelope of low-mass stars as they evolve.
Methods. We have estimated the amplitude of the magnetic contribution to the forcing and dissipation of tidally induced magneto-inertial waves throughout the structural and rotational evolution of low-mass stars (from M to F-type). For this purpose, we have used detailed grids of rotating stellar models computed with the stellar evolution code STAREVOL. The amplitude of dynamo-generated magnetic fields is estimated via physical scaling laws at the base and the top of the convective envelope.
Results. We find that the large-scale magnetic field of the star has little influence on the excitation of tidal waves in the case of nearly-circular orbits and coplanar hot-Jupiter planetary systems, but that it has a major impact on the way waves are dissipated. Our results therefore indicate that a full magneto-hydrodynamical treatment of the propagation and dissipation of tidal waves is needed to properly assess the impact of star-planet tidal interactions throughout the evolutionary history of low-mass stars hosting short-period massive planets.

Abstract Copyright: © A. Astoul et al. 2019

Journal keyword(s): magnetohydrodynamics (MHD) - waves - planet-star interactions - stars: evolution - stars: magnetic field - stars: rotation

Simbad objects: 67

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2019A&A...631A.111A and select 'bookmark this link' or equivalent in the popup menu


2021.01.27-18:02:34

© Université de Strasbourg/CNRS

    • Contact