2019A&A...632A...7L


C.D.S. - SIMBAD4 rel 1.7 - 2021.04.19CEST07:20:29

2019A&A...632A...7L - Astronomy and Astrophysics, volume 632A, 7-7 (2019/12-0)

Super-Earth masses sculpted by pebble isolation around stars of different masses.

LIU B., LAMBRECHTS M., JOHANSEN A. and LIU F.

Abstract (from CDS):

We developed a pebble-driven core accretion model to study the formation and evolution of planets around stars in the stellar mass range of 0.08M-1M. By Monte Carlo sampling of the initial conditions, the growth and migration of a large number of individual protoplanetary embryos were simulated in a population synthesis manner. We tested two hypotheses for the birth locations of embryos: at the water ice line or log-uniformly distributed over entire protoplanetary disks. Two types of disks with different turbulent viscous parameters αt of 10–3 and 10–4 are also investigated to shed light on the role of outward migration of protoplanets. The forming planets are compared with the observed exoplanets in terms of mass, semimajor axis, metallicity, and water content. We find that gas giant planets are likely to form when the characteristic disk sizes are larger, the disk accretion rates are higher, the disks are more metal rich, and/or their stellar hosts are more massive. Our model shows that first, the characteristic mass of super-Earth is set by the pebble isolation mass. Super-Earth masses increase linearly with the mass of its stellar host, which corresponds to one Earth mass around a late M-dwarf star and 20 Earth masses around a solar-mass star. Second, the low-mass planets, up to 20M, can form around stars with a wide range of metallicities, while massive gas giant planets are preferred to grow around metal rich stars. Third, super-Earth planets that are mainly composed of silicates, with relatively low water fractions, can form from protoplanetary embryos at the water ice line in weakly turbulent disks where outward migration is suppressed. However, if the embryos are formed over a wide range of radial distances, the super-Earths would end up having a distinctive, bimodal composition in water mass. Altogether, our model succeeds in quantitatively reproducing several important observed properties of exoplanets and correlations with their stellar hosts.

Abstract Copyright: © ESO 2019

Journal keyword(s): methods: numerical - planets and satellites: formation

Simbad objects: 18

goto Full paper

goto View the reference in ADS

Number of rows : 18

N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2021
#notes
1 G 268-38 PM* 00 44 59.3314993038 -15 16 17.543124886     14.150 13.801   M4.5 88 0
2 V* YZ Cet Er* 01 12 30.6367741360 -16 59 56.361313690 15.315 13.885 12.074 10.696 8.938 M4.0Ve 212 0
3 NAME Teegarden's Star LM* 02 53 00.8913291021 +16 52 52.642086267   17.21   14.1   dM6 116 0
4 L 372-58 PM* 03 35 59.6996745075 -44 30 45.725264343 16.22 14.98 13.07 11.45 9.47 M5.5V 86 0
5 NAME Tau-Aur Complex SFR 04 30 +25.0           ~ 1251 0
6 L 678-39 PM* 09 36 01.6372518187 -21 39 38.878281901 13.647 12.48 10.906 9.858 8.577 M2.5V 111 0
7 L 320-124 PM* 10 14 51.7783473599 -47 09 24.189733387       13.067   M4 77 0
8 Ross 128b Pl 11 47 44.3968668170 +00 48 16.404931305           ~ 23 0
9 Ross 128 Er* 11 47 44.3968668170 +00 48 16.404931305 14.223 12.905 11.153 9.859 8.184 dM4 353 0
10 NAME Proxima Centauri Er* 14 29 42.9451234609 -62 40 46.170818907 14.21 12.95 11.13 9.45 7.41 M5.5Ve 1029 0
11 NAME Ophiuchus Molecular Cloud SFR 16 28 06 -24 32.5           ~ 3156 1
12 EM* AS 209 Or* 16 49 15.3035547820 -14 22 08.642015783   12.62 11.28     K4Ve 259 0
13 G 139-21 PM* 17 15 18.9337265994 +04 57 50.064695682       14.394   M4.5V 255 1
14 MOA 2016-BLG-350b Pl 17 55 23.50 -30 12 26.1           ~ 14 0
15 HD 163296 Ae* 17 56 21.2882188601 -21 57 21.872343282 7.00 6.93 6.85 6.86 6.67 A1Vep 851 0
16 L 788-37 PM* 22 13 42.8628179730 -17 41 08.676495139   15.32 13.672 13.443   dM4.5 54 0
17 TRAPPIST-1 LM* 23 06 29.3684052886 -05 02 29.031690445     18.798 16.466 14.024 M7.5e 581 0
18 TRAPPIST-1b Pl 23 06 29.3684052886 -05 02 29.031690445           ~ 138 0

    Equat.    Gal    SGal    Ecl

To bookmark this query, right click on this link: simbad:objects in 2019A&A...632A...7L and select 'bookmark this link' or equivalent in the popup menu


2021.04.19-07:20:29

© Université de Strasbourg/CNRS

    • Contact