SIMBAD references

2019ApJ...880...97L - Astrophys. J., 880, 97-97 (2019/August-1)

Modeling a carrington-scale stellar superflare and coronal mass ejection from κ1 Cet.

LYNCH B.J., AIRAPETIAN V.S., DEVORE C.R., KAZACHENKO M.D., LUFTINGER T., KOCHUKHOV O., ROSEN L. and ABBETT W.P.

Abstract (from CDS):

Observations from the Kepler mission have revealed frequent superflares on young and active solar-like stars. Superflares result from the large-scale restructuring of stellar magnetic fields, and are associated with the eruption of coronal material (a coronal mass ejection, or CME) and energy release that can be orders of magnitude greater than those observed in the largest solar flares. These catastrophic events, if frequent, can significantly impact the potential habitability of terrestrial exoplanets through atmospheric erosion or intense radiation exposure at the surface. We present results from numerical modeling designed to understand how an eruptive superflare from a young solar-type star, κ1Cet, could occur and would impact its astrospheric environment. Our data-inspired, three-dimensional magnetohydrodynamic modeling shows that global-scale shear concentrated near the radial-field polarity inversion line can energize the closed-field stellar corona sufficiently to power a global, eruptive superflare that releases approximately the same energy as the extreme 1859 Carrington event from the Sun. We examine proxy measures of synthetic emission during the flare and estimate the observational signatures of our CME-driven shock, both of which could have extreme space-weather impacts on the habitability of any Earth-like exoplanets. We also speculate that the observed 1986 Robinson-Bopp superflare from κ1Cet was perhaps as extreme for that star as the Carrington flare was for the Sun.

Abstract Copyright: © 2019. The American Astronomical Society. All rights reserved.

Journal keyword(s): magnetohydrodynamics MHD - solar-terrestrial relations - stars: magnetic field - stars: solar-type - Sun: coronal mass ejections CMEs - Sun: flares

Simbad objects: 2

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2019ApJ...880...97L and select 'bookmark this link' or equivalent in the popup menu