SIMBAD references

2019ApJ...882..153G - Astrophys. J., 882, 153-153 (2019/September-2)

The greenhouse effect in buried galactic nuclei and the resonant HCN vibrational emission.

GONZALEZ-ALFONSO E. and SAKAMOTO K.

Abstract (from CDS):

Recent interferometric observations have shown bright HCN emission from the ν2 = 1 vibrational state arising in buried nuclear regions of galaxies, indicating an efficient pumping of the ν2 = 1 state through the absorption of 14 µm continuum photons. We modeled the continuum and HCN vibrational line emission in these regions, characterized by high column densities of dust and high luminosities, using a spherically symmetric approach, simulating both a central heating source (active galactic nucleus, AGN) and a compact nuclear starburst (SB). We find that when the H2 columns become very high, NH2 >= 1025 cm–2, trapping of continuum photons within the nuclear region dramatically enhances the dust temperature (Tdust) in the inner regions, even though the predicted spectral energy distribution as seen from the outside becomes relatively cold. The models thus predict a bright continuum at millimeter wavelengths for a luminosity surface brightness (averaged over the model source) of ∼108 L pc–2. This greenhouse effect significantly enhances the mean mid-infrared intensity within the dusty volume, populating the ν2 = 1 state to the extent that the HCN vibrational lines become optically thick. AGN models yield higher Tdust in the inner regions and higher peak (sub)millimeter continuum brightness than SB models, but similar HCN vibrational J = 3-2 and 4-3 emission owing to both optical depth effects and a moderate impact of high Tdust on these low-J lines. The observed HCN vibrational emission in several galaxies can be accounted for with an HCN abundance of ∼10–6 (relative to H2) and luminosity surface brightness in the range (0.5-2) x 108 L pc–2, predicting a far-infrared photosphere with Tdust ∼ 80-150 K, in agreement with the values inferred from far-infrared molecular absorption.

Abstract Copyright: © 2019. The American Astronomical Society. All rights reserved.

Journal keyword(s): galaxies: evolution - galaxies: ISM - infrared: galaxies - line: formation - submillimeter: galaxies

Simbad objects: 8

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2019ApJ...882..153G and select 'bookmark this link' or equivalent in the popup menu


2021.03.04-17:41:38

© Université de Strasbourg/CNRS

    • Contact