SIMBAD references

2019MNRAS.482..616B - Mon. Not. R. Astron. Soc., 482, 616-625 (2019/January-1)

Coefficients of variation for detecting solar-like oscillations.

BELL K.J., HEKKER S. and KUSZLEWICZ J.S.

Abstract (from CDS):

Detecting the presence and characteristic scale of a signal is a common problem in data analysis. We develop a fast statistical test of the null hypothesis that a Fourier-like power spectrum is consistent with noise. The null hypothesis is rejected where the local 'coefficient of variation' (CV) - the ratio of the standard deviation to the mean - in a power spectrum deviates significantly from expectations for pure noise (CV ≃ 1.0 for a χ2 2-degrees-of-freedom distribution). This technique is of particular utility for detecting signals in power spectra with frequency-dependent noise backgrounds, as it is only sensitive to features that are sharp relative to the inspected frequency bin width. We develop a CV-based algorithm to quickly detect the presence of solar-like oscillations in photometric power spectra that are dominated by stellar granulation. This approach circumvents the need for background fitting to measure the frequency of maximum solar-like oscillation power, νmax. In this paper, we derive the basic method and demonstrate its ability to detect the pulsational power excesses from the well-studied APOKASC-2 sample of oscillating red giants observed by Kepler. We recover the catalogued νmax values with an average precision of 2.7 per cent for 99.4 per cent of the stars with 4 yr of Kepler photometry. Our method produces false positives for < 1 per cent of dwarf stars with νmax well above the long-cadence Nyquist frequency. The algorithm also flags spectra that exhibit astrophysically interesting signals in addition to single solar-like oscillation power excesses, which we catalogue as part of our characterization of the Kepler light curves of APOKASC-2 targets.

Abstract Copyright: © 2018 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society

Journal keyword(s): methods: data analysis - methods: statistical - stars: oscillations

Status at CDS:   waiting for electronic table

Simbad objects: 13

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2019MNRAS.482..616B and select 'bookmark this link' or equivalent in the popup menu


2020.04.09-17:23:52

© Université de Strasbourg/CNRS

    • Contact