SIMBAD references

2019MNRAS.483..565C - Mon. Not. R. Astron. Soc., 483, 565-592 (2019/February-2)

GRRMHD simulations of tidal disruption event accretion discs around supermassive black holes: jet formation, spectra, and detectability.

CURD B. and NARAYAN R.

Abstract (from CDS):

We report results from general relativistic radiation magnetohydrodynamics (GRRMHD) simulations of a super-Eddington black hole (BH) accretion disc formed as a result of a tidal disruption event (TDE). We consider the fiducial case of a solar mass star on a mildly penetrating orbit disrupted by a supermassive BH of mass 106M_☉, and consider the epoch of peak fallback rate. We post-process the simulation data to compute viewing angle-dependent spectra. We perform a parameter study of the dynamics of the accretion disc as a function of BH spin and magnetic flux, and compute model spectra as a function of the viewing angle of the observer. We also consider detection limits based on the model spectra. We find that an accretion disc with a relatively weak magnetic field around the BH [so-called SANE (Standard and Normal Evolution) regime of accretion] does not launch a relativistic jet, whether or not the BH is rotating. Such models reasonably reproduce several observational properties of non-jetted TDEs. The same is also true for a non-rotating BH with a strong magnetic field (magnetically arrested accretion disc, MAD regime). One of our simulations has a rapidly rotating BH (spin parameter 0.9) as well as a MAD accretion disc. This model launches a powerful relativistic jet, which is powered by the BH spin energy. It reproduces the high-energy emission and jet structure of the jetted TDE Swift J1644 + 57 surprisingly well. Jetted TDEs may thus correspond to the subset of TDE systems that have both a rapidly spinning BH and MAD accretion.

Abstract Copyright: © 2018 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society

Journal keyword(s): accretion, accretion discs - black hole physics - MHD - radiative transfer - gamma-rays: galaxies - X-rays: galaxies

Simbad objects: 9

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2019MNRAS.483..565C and select 'bookmark this link' or equivalent in the popup menu


2021.04.22-23:03:59

© Université de Strasbourg/CNRS

    • Contact