SIMBAD references

2019MNRAS.487.5372K - Mon. Not. R. Astron. Soc., 487, 5372-5387 (2019/August-3)

Observable scattered light features from inclined and non-inclined planets embedded in protoplanetary discs.


Abstract (from CDS):

Over the last few years instruments such as VLT/SPHERE and Subaru/HiCIAO have been able to take detailed scattered light images of protoplanetary discs. Many of the features observed in these discs are generally suspected to be caused by an embedded planet, and understanding the cause of these features requires detailed theoretical models. In this work we investigate disc-planet interactions using the PLUTO code to run 2D and 3D hydrodynamic simulations of protoplanetary discs with embedded 30 and 300 M planets on both an inclined (i = 2.86°) and non-inclined orbit, using an α-viscosity of 4 x 10–3. We produce synthetic scattered light images of these discs at H-band wavelengths using the radiative transfer code RADMC3D. We find that while the surface density evolution in 2D and 3D simulations of inclined and non-inclined planets remain fairly similar, their observational appearance is remarkably different. Most of the features seen in the synthetic H-band images are connected to density variations of the disc at around 3.3 scale heights above and below the mid-plane, which emphasizes the need for 3D simulations. Planets on sustained orbital inclinations disrupt the disc's upper atmosphere and produce radically different observable features and intensity profiles, including shadowing effects and intensity variation of the order of 10-20 times the surrounding background. The vertical optical depth to the disc mid-plane for H-band wavelengths is τ ≃ 20 in the disc gap created by the high-mass planet. We conclude that direct imaging of planets embedded in the disc remains difficult to observe, even for massive planets in the gap.

Abstract Copyright: © 2019 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society

Journal keyword(s): hydrodynamics - radiative transfer - planet-disc interactions - protoplanetary discs

Simbad objects: 5

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2019MNRAS.487.5372K and select 'bookmark this link' or equivalent in the popup menu


© Université de Strasbourg/CNRS

    • Contact