SIMBAD references

2019PASP..131j8005B - Publ. Astron. Soc. Pac., 131, part no 10, 8005-108005 (2019/October-0)

Collaborative nested sampling: Big Data versus complex physical models.


Abstract (from CDS):

The data torrent unleashed by current and upcoming astronomical surveys demands scalable analysis methods. Many machine learning approaches scale well, but separating the instrument measurement from the physical effects of interest, dealing with variable errors, and deriving parameter uncertainties is often an afterthought. Classic forward-folding analyses with Markov chain Monte Carlo or nested sampling enable parameter estimation and model comparison, even for complex and slow-to-evaluate physical models. However, these approaches require independent runs for each data set, implying an unfeasible number of model evaluations in the Big Data regime. Here I present a new algorithm, collaborative nested sampling, for deriving parameter probability distributions for each observation. Importantly, the number of physical model evaluations scales sub-linearly with the number of data sets, and no assumptions about homogeneous errors, Gaussianity, the form of the model, or heterogeneity/completeness of the observations need to be made. Collaborative nested sampling has immediate applications in speeding up analyses of large surveys, integral-field-unit observations, and Monte Carlo simulations.

Abstract Copyright: © 2019. The Astronomical Society of the Pacific. All rights reserved.

Journal keyword(s):

Status at CDS:  

Simbad objects: 1

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2019PASP..131j8005B and select 'bookmark this link' or equivalent in the popup menu


© Université de Strasbourg/CNRS

    • Contact