SIMBAD references

2020A&A...639A.121F - Astronomy and Astrophysics, volume 639A, 121-121 (2020/7-1)

Annular substructures in the transition disks around LkCa 15 and J1610.

FACCHINI S., BENISTY M., BAE J., LOOMIS R., PEREZ L., ANSDELL M., MAYAMA S., PINILLA P., TEAGUE R., ISELLA A. and MANN A.

Abstract (from CDS):

We present high-resolution millimeter continuum ALMA observations of the disks around the T Tauri stars LkCa 15 and 2MASS J16100501-2132318 (hereafter, J1610). These transition disks host dust-depleted inner regions, which have possibly been carved by massive planets, and they are of prime interest to the study of the imprints of planet-disk interactions. While at moderate angular resolution, they appear as a broad ring surrounding a cavity, the continuum emission resolves into multiple rings at a resolution of ∼60x40mas (∼7.5au for LkCa 15, ∼6au for J1610) and ∼7µJy/beam rms at 1.3 mm. In addition to a broad extended component, LkCa 15 and J1610 host three and two narrow rings, respectively, with two bright rings in LkCa 15 being radially resolved. LkCa 15 possibly hosts another faint ring close to the outer edge of the mm emission. The rings look marginally optically thick, with peak optical depths of ∼0.5 (neglecting scattering), in agreement with high angular resolution observations of full disks. We performed hydrodynamical simulations with an embedded, sub-Jovian-mass planet and show that the observed multi-ringed substructure can be qualitatively explained as the outcome of the planet-disk interaction. We note, however, that the choice of the disk cooling timescale alone can significantly impact the resulting gas and dust distributions around the planet, leading to different numbers of rings and gaps and different spacings between them. We propose that the massive outer disk regions of transition disks are favorable places for planetesimals, and possibly second-generation planet formation of objects with a lower mass than the planets carving the inner cavity (typically few MJup), and that the annular substructures observed in LkCa 15 and J1610 may be indicative of planetary core formation within dust-rich pressure traps. Current observations are compatible with other mechanisms contributing to the origin of the observed substructures, in particular with regard to narrow rings generated (or facilitated) at the edge of the CO and N2 snowlines.

Abstract Copyright: © ESO 2020

Journal keyword(s): accretion, accretion disks - protoplanetary disks - submillimeter: planetary systems - stars: individual: LkCa 15 - stars: individual: J1610

VizieR on-line data: <Available at CDS (J/A+A/639/A121): list.dat fits/*>

Simbad objects: 17

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2020A&A...639A.121F and select 'bookmark this link' or equivalent in the popup menu


2021.01.15-17:19:29

© Université de Strasbourg/CNRS

    • Contact