SIMBAD references

2020A&A...641A..92T - Astronomy and Astrophysics, volume 641A, 92-92 (2020/9-1)

Characterization of the K2-38 planetary system. Unraveling one of the densest planets known to date.

TOLEDO-PADRON B., LOVIS C., SUAREZ MASCARENO A., BARROS S.C.C., GONZALEZ HERNANDEZ J.I., SOZZETTI A., BOUCHY F., ZAPATERO OSORIO M.R., REBOLO R., CRISTIANI S., PEPE F.A., SANTOS N.C., SOUSA S.G., TABERNERO H.M., LILLO-BOX J., BOSSINI D., ADIBEKYAN V., ALLART R., DAMASSO M., D'ODORICO V., FIGUEIRA P., LAVIE B., LO CURTO G., MEHNER A., MICELA G., MODIGLIANI A., NUNES N.J., PALLE E., ABREU M., AFFOLTER M., ALIBERT Y., ALIVERTI M., ALLENDE PRIETO C., ALVES D., AMATE M., AVILA G., BALDINI V., BANDY T., BENATTI S., BENZ W., BIANCO A., BROEG C., CABRAL A., CALDERONE G., CIRAMI R., COELHO J., CONCONI P., CORETTI I., CUMANI C., CUPANI G., DEIRIES S., DEKKER H., DELABRE B., DEMANGEON O., DI MARCANTONIO P., EHRENREICH D., FRAGOSO A., GENOLET L., GENONI M., GENOVA SANTOS R., HUGHES I., IWERT O., KNUDSTRUP J., LANDONI M., LIZON J.L., MAIRE C., MANESCAU A., MARTINS C.J.A.P., MEGEVAND D., MOLARO P., MONTEIRO M.J.P.F.G., MONTEIRO M.A., MOSCHETTI M., MUELLER E., OGGIONI L., OLIVEIRA A., OSHAGH M., PARIANI G., PASQUINI L., PORETTI E., RASILLA J.L., REDAELLI E., RIVA M., SANTANA TSCHUDI S., SANTIN P., SANTOS P., SEGOVIA A., SOSNOWSKA D., SPANO P., TENEGI F., UDRY S., ZANUTTA A. and ZERBI F.

Abstract (from CDS):


Context. An accurate characterization of the known exoplanet population is key to understanding the origin and evolution of planetary systems. Determining true planetary masses through the radial velocity (RV) method is expected to experience a great improvement thanks to the availability of ultra-stable echelle spectrographs.
Aims. We took advantage of the extreme precision of the new-generation echelle spectrograph ESPRESSO to characterize the transiting planetary system orbiting the G2V star K2-38 located at 194pc from the Sun with V∼11.4. This system is particularly interesting because it could contain the densest planet detected to date.
Methods. We carried out a photometric analysis of the available K2 photometric light curve of this star to measure the radius of its two known planets, K2-38b and K2-38c, with Pb=4.01593±0.00050d and Pc=10.56103±0.00090d, respectively. Using 43 ESPRESSO high-precision RV measurements taken over the course of 8 months along with the 14 previously published HIRES RV measurements, we modeled the orbits of the two planets through a Markov chain Monte Carlo analysis, significantly improving their mass measurements.
Results. Using ESPRESSO spectra, we derived the stellar parameters, Teff=5731±66, logg=4.38±0.11dex, and [Fe/H]=0.26±0.05dex, and thus the mass and radius of K2-38, M*=1.03–0.02+0.04M and R*=1.06–0.06+0.09R. We determine new values for the planetary properties of both planets. We characterize K2-38b as a super-Earth with RP=1.54±0.14R and Mp=7.3–1.0+1.1M, and K2-38c as a sub-Neptune with RP=2.29±0.26R and Mp=8.3–1.3+1.3M. Combining the radius and mass measurements, we derived a mean density of ρp=11.0–2.8+4.1g/cm3 for K2-38b and ρp=3.8–1.1+1.8g/cm3 for K2-38c, confirming K2-38b as one of the densest planets known to date .
Conclusions. The best description for the composition of K2-38b comes from an iron-rich Mercury-like model, while K2-38c is better described by a rocky-model with H2 envelope. The maximum collision stripping boundary shows how giant impacts could be the cause for the high density of K2-38b. The irradiation received by each planet places them on opposite sides of the radius valley. We find evidence of a long-period signal in the RV time-series whose origin could be linked to a 0.25-3MJ planet or stellar activity.

Abstract Copyright: © ESO 2020

Journal keyword(s): techniques: radial velocities - techniques: photometric - instrumentation: spectrographs - stars: individual: K2-38 - planets and satellites: detection - planets and satellites: composition

VizieR on-line data: <Available at CDS (J/A+A/641/A92): table1.dat>

Simbad objects: 8

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2020A&A...641A..92T and select 'bookmark this link' or equivalent in the popup menu