SIMBAD references

2020ApJ...890..142P - Astrophys. J., 890, 142-142 (2020/February-3)

An ALMA survey of H2CO in protoplanetary disks.

PEGUES J., OBERG K.I., BERGNER J.B., LOOMIS R.A., QI C., LE GAL R., CLEEVES L.I., GUZMAN V.V., HUANG J., JORGENSEN J.K., ANDREWS S.M., BLAKE G.A., CARPENTER J.M., SCHWARZ K.R., WILLIAMS J.P. and WILNER D.J.

Abstract (from CDS):

H2CO is one of the most abundant organic molecules in protoplanetary disks and can serve as a precursor to more complex organic chemistry. We present an Atacama Large Millimeter/submillimeter Array survey of H2CO toward 15 disks covering a range of stellar spectral types, stellar ages, and dust continuum morphologies. H2CO is detected toward 13 disks and tentatively detected toward a fourteenth. We find both centrally peaked and centrally depressed emission morphologies, and half of the disks show ring-like structures at or beyond expected CO snowline locations. Together these morphologies suggest that H2CO in disks is commonly produced through both gas-phase and CO-ice-regulated grain-surface chemistry. We extract disk-averaged and azimuthally-averaged H2CO excitation temperatures and column densities for four disks with multiple H2CO line detections. The temperatures are between 20-50 K, with the exception of colder temperatures in the DM Tau disk. These temperatures suggest that H2CO emission in disks generally emerges from the warm molecular layer, with some contributions from the colder midplane. Applying the same H2CO excitation temperatures to all disks in the survey, we find that H2CO column densities span almost three orders of magnitude (∼5 x 1011-5 x 1014 cm–2). The column densities appear uncorrelated with disk size and stellar age, but Herbig Ae disks may have less H2CO compared to T Tauri disks, possibly because of less CO freeze-out. More H2CO observations toward Herbig Ae disks are needed to confirm this tentative trend, and to better constrain under which disk conditions H2CO and other oxygen-bearing organics efficiently form during planet formation.

Abstract Copyright: © 2020. The American Astronomical Society. All rights reserved.

Journal keyword(s): Astrochemistry - Protoplanetary disks - Radio interferometry - Interstellar molecules

Simbad objects: 22

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2020ApJ...890..142P and select 'bookmark this link' or equivalent in the popup menu


2020.09.25-21:50:43

© Université de Strasbourg/CNRS

    • Contact