SIMBAD references

2020ApJ...894L..20X - Astrophys. J., 894, L20-L20 (2020/May-2)

Independent core rotation in massive filaments in Orion.

XU X., LI D., DAI Y.S., FULLER G.A. and YUE N.

Abstract (from CDS):

We present high-angular-resolution Atacama Large Millimeter/submillimeter Array images of N2H+ (1-0) that have been combined with those from the Nobeyama telescope toward the Orion Molecular Cloud (OMC)-2 and OMC-3 filamentary regions. The filaments (with typical widths of ∼0.1 pc) and dense cores are resolved. The measured 2D velocity gradients of cores are between 1.3 and 16.7 km s–1 pc–1, corresponding to a specific angular momentum (J/M) between 0.0012 and 0.016 pc km s–1. With respect to the core size R, the specific angular momentum follows a power law J/M ∝ R1.52±0.14. The ratio (β) between the rotational energy and gravitational energy ranges from 0.00041 to 0.094, indicating insignificant support from rotation against gravitational collapse. We further focus on the alignment between the cores' rotational axes, which is defined to be perpendicular to the direction of the velocity gradient (θG), and the direction of elongation of filaments (θf) in this massive star-forming region. The distribution of the angle between θf and θG was found to be random, i.e., the cores' rotational axes have no discernible correlation with the elongation of their hosting filament. This implies that, in terms of angular momentum, the cores have evolved to be dynamically independent from their natal filaments.

Abstract Copyright: © 2020. The American Astronomical Society. All rights reserved.

Journal keyword(s): Interstellar medium - Interstellar filaments - Interstellar clouds - Interstellar dynamics - Interstellar molecules

Status at CDS : Tables of objects will be appraised for possible ingestion in SIMBAD.

Simbad objects: 9

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2020ApJ...894L..20X and select 'bookmark this link' or equivalent in the popup menu


2021.03.03-22:28:09

© Université de Strasbourg/CNRS

    • Contact