SIMBAD references

2020ApJ...899..113P - Astrophys. J., 899, 113-113 (2020/August-3)

Comprehensive multimessenger modeling of the extreme blazar 3HSP J095507.9+355101 and predictions for IceCube.


Abstract (from CDS):

3HSP J095507.9+355101 is an extreme blazar that has been possibly associated with a high-energy neutrino (IceCube-200107A) detected 1 day before the blazar was found to undergo a hard X-ray flare. We perform a comprehensive study of the predicted multimessenger emission from 3HSP J095507.9+355101 during its recent X-ray flare, but also in the long term. We focus on one-zone leptohadronic models, but we also explore alternative scenarios: (i) a blazar-core model, which considers neutrino production in the inner jet, close to the supermassive black hole; (ii) a hidden external-photon model, which considers neutrino production in the jet through interactions with photons from a weak broad line region; (iii) a proton-synchrotron model, where high-energy protons in the jet produce γ-rays via synchrotron; and (iv) an intergalactic cascade scenario, where neutrinos are produced in the intergalactic medium by interactions of a high-energy cosmic-ray beam escaping the jet. The Poisson probability to detect a single muon neutrino in 10 years from 3HSP J095507.9+355101 with the real-time IceCube alert analysis is ∼1% (3%) for the most optimistic one-zone leptohadronic model (the multi-zone blazar-core model). Meanwhile, detection of a single neutrino during the 44-day-long high X-ray flux-state period following the neutrino detection is 0.06%, according to our most optimistic leptohadronic model. The most promising scenarios for neutrino production also predict strong intrasource γ-ray attenuation above ∼100 GeV. If the association is real, then IceCube-Gen2 and other future detectors should be able to provide additional evidence for neutrino production in 3HSP J095507.9+355101 and other extreme blazars.

Abstract Copyright: © 2020. The American Astronomical Society. All rights reserved.

Journal keyword(s): BL Lacertae objects - Blazars - Gamma-rays - Neutrino astronomy - High energy astrophysics

Simbad objects: 5

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2020ApJ...899..113P and select 'bookmark this link' or equivalent in the popup menu


© Université de Strasbourg/CNRS

    • Contact