SIMBAD references

2020MNRAS.495.3614C - Mon. Not. R. Astron. Soc., 495, 3614-3635 (2020/July-2)

The relationship between mid-infrared and sub-millimetre variability of deeply embedded protostars.

CONTRERAS PENA C., JOHNSTONE D., BAEK G., HERCZEG G.J., MAIRS S., SCHOLZ A. and LEE J.-E.

Abstract (from CDS):

We study the relationship between the mid-infrared (mid-IR) and sub-millimetre (sub-mm) variability of deeply embedded protostars using the multi-epoch data from the Wide-field Infrared Survey Explorer (WISE/NEOWISE) and the ongoing James Clerk Maxwell Telescope (JCMT) Transient Survey. Our search for signs of stochastic (random) and/or secular (roughly monotonic in time) variability in a sample of 59 young stellar objects (YSOs) revealed that 35 are variable in at least one of the two surveys. This variability is dominated by secular changes. Of those objects with secular variability, 14 objects (22 per cent of the sample) show correlated secular variability over mid-IR and sub-mm wavelengths. Variable accretion is the likely mechanism responsible for this type of variability. Fluxes of YSOs that vary in both wavelengths follow a relation of log10F4.6(t) = ηlog10F850(t) between the mid-IR and sub-mm, with η = 5.53 ± 0.29. This relationship arises from the fact that sub-mm fluxes respond to the dust temperature in the larger envelope whereas the mid-IR emissivity is more directly proportional to the accretion luminosity. The exact scaling relation, however, depends on the structure of the envelope, the importance of viscous heating in the disc, and dust opacity laws.

Abstract Copyright: © 2020 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society

Journal keyword(s): stars: formation - stars: pre-main-sequence - stars: protostars - stars: variables: T Tauri, Herbig Ae/Be - infrared: stars - submillimetre: stars

Status at CDS : Large table(s) will be appraised for possible ingestion in VizieR.

Simbad objects: 73

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2020MNRAS.495.3614C and select 'bookmark this link' or equivalent in the popup menu


2020.12.01-01:16:14

© Université de Strasbourg/CNRS

    • Contact