SIMBAD references

2021MNRAS.505..116U - Mon. Not. R. Astron. Soc., 505, 116-125 (2021/July-3)

Enormous explosion energy of Type IIP SN 2017gmr with bipolar 56Ni ejecta.

UTROBIN V.P., CHUGAI N.N., ANDREWS J.E., SMITH N., JENCSON J., HOWELL D.A., BURKE J., HIRAMATSU D., McCULLY C. and BOSTROEM K.A.

Abstract (from CDS):

The unusual Type IIP SN 2017gmr is revisited in order to pinpoint the origin of its anomalous features, including the peculiar light curve after about 100 d. The hydrodynamic modelling suggests the enormous explosion energy of ≃1052 erg. We find that the light curve with the prolonged plateau/tail transition can be reproduced either in the model with a high hydrogen abundance in the inner ejecta and a large amount of radioactive 56Ni, or in the model with an additional central energy source associated with the fallback/magnetar interaction in the propeller regime. The asymmetry of the late H α emission and the reported linear polarization are reproduced by the model of the bipolar 56Ni ejecta. The similar bipolar structure of the oxygen distribution is responsible for the two-horn structure of the [O I] 6360, 6364 Å emission. The bipolar 56Ni structure along with the high explosion energy are indicative of the magneto-rotational explosion. We identify narrow high-velocity absorption features in H α and He I10 830 Å lines with their origin in the fragmented cold dense shell formed due to the outer ejecta deceleration in a confined circumstellar shell.

Abstract Copyright: © 2021 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society

Journal keyword(s): hydrodynamics - methods: numerical - supernovae: general - supernovae: individual: SN 2017gmr

Simbad objects: 16

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2021MNRAS.505..116U and select 'bookmark this link' or equivalent in the popup menu