2003A&A...397.1019H


Query : 2003A&A...397.1019H

2003A&A...397.1019H - Astronomy and Astrophysics, volume 397, 1019-1034 (2003/1-3)

Dynamics of flares on late type dMe stars. IV. Constraints from spectrophotometry in the visible.

HOUDEBINE E.R.

Abstract (from CDS):

We investigate the spectral signatures of stellar flares in the wavelength range 3600Å to 4500Å and in broad band photometry. We study the phenomenology of the spectral signatures and we found that flares are best described by two main phases; an impulsive phase and a gradual phase, for which the physical properties are different. Important spectral differences between flares lead us to distinguish four main classes: (i) solar-like chromospheric or two-ribbon flares, (ii) white-light flares, (iii) combined white-light flares with distinct impulsive and gradual phases, and (iv) non solar-like flares (usually occuring on RS CVn type stars). We show how this classification corresponds to substantial differences in the physical properties of the flare components. We compiled all available spectroscopic data for stellar flares. We found several new empirical correlations between the time lags in the spectral lines (rise and decay times). We found for instance that during the gradual phase, the rise time in the Hγ line is well correlated to the rise time in the Caii K line, and that the Caii K line is 1.63 times slower to rise than the Hγ line. Similar correlations were found between the rise and decay times in these lines. These correlations are evidence that there is a dominant mechanism commanding the temporal flux evolutions during the gradual phase of flares. This mechanism applies on time scales ranging from one minute to more than a hundred minutes. We found correlations between the time lags and the maximum fluxes in the Johnson U-band and the spectral lines. These correlations show that the larger the flare the longer it takes to evolve. We show that the maximum flux in the Johnson U-band correlates well, but not linearly with the maximum flux in the Hγ line during the impulsive phase, and over five orders of magnitude. We argue how this correlation can provide constraints on the currently available models. The spectral line maximum fluxes during the gradual phase also correlate with the Johnson U-band flux, which demonstrates that somehow the impulsive and gradual phases are physically linked. The correlation between the Hγ and Caii K line fluxes during the gradual phase and the lack of dependence of the flux ratio of those lines on flare magnitude reveal that larger flares are not ``hotter'' than smaller flares during the gradual phase. We examine the behaviour of the spectral line widths: While the Caii K line width shows essentially no detectable variation, the Balmer line widths show a complex dependency on the white light intensity. We distinguish three energy domains where the Balmer line widths exhibit a different behaviour: (i) for small flares, the widths remain rather constant as a function of white light intensity, which suggests that in this energy range the U-band is not a good diagnostic of the total energy release and that dense ``kernels'' do not dominate the Balmer emission, (ii) for medium size flares, the widths rapidly increase with the U-band flux up to about 15Å, which indicates that emission in the Balmer lines is then dominated by kernel emission, and (iii) for large flares the widths decrease with increasing U-band flux, which suggests that the Balmer line emission is then increasingly dominated by a radiative pumping process between the white light and the Balmer lines. Finally, we remark that the Balmer line fluxes are well correlated to the white light flux during the impulsive phase of flares, and not only at flare maximum. We obtain a power law correlation between the Balmer line and U-band fluxes that is evidence for either a common source (``kernels'') or strongly related flare components.

Abstract Copyright:

Journal keyword(s): stars: flare - stars: activity - stars: late-type

CDS comments: In table 1, T48 = HPRA 48.

Simbad objects: 15

goto Full paper

goto View the references in ADS

Number of rows : 15
N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2024
#notes
1 G 272-61A Er* 01 39 01.3772561114 -17 57 02.587471791           M5.5V 123 0
2 G 272-61B Er* 01 39 01.6377185550 -17 57 01.001240728           M6V 855 0
3 V* V781 Ori TT* 05 34 52.4027796528 -06 11 56.981046912   17.34 16.213   13.926 M1.9 27 0
4 V* YZ CMi Er* 07 44 40.1723046464 +03 33 08.875227574 13.761 12.831 11.225 9.958 8.263 M4.0Ve 883 0
5 V* AD Leo Er* 10 19 36.2808181226 +19 52 12.010446571   10.82 9.52 9.19   dM3 1339 1
6 Wolf 424 ** 12 33 17.361480 +09 01 15.79224 15.398 14.313 12.467 10.937 8.988 M5.5V 321 0
7 NAME Proxima Centauri Er* 14 29 42.9461331854 -62 40 46.164680672 14.21 12.95 11.13 9.45 7.41 M5.5Ve 1296 0
8 V* BY Dra BY* 18 33 55.7720712062 +51 43 08.897780286 10.22 9.23   8.733   K4Ve+K7.5Ve 619 0
9 V* AT Mic Er* 20 41 51.15925 -32 26 06.8283 12.753 11.909 10.343 9.098 7.383 M4.5Ve+M4.5Ve 356 0
10 HD 197481 BY* 20 45 09.5324974119 -31 20 27.237889841   10.05 8.627 9.078 6.593 M1VeBa1 1151 0
11 V* EZ Aqr Er* 22 38 33.576000 -15 17 59.75700 15.762 14.33 12.38 12.12 8.677 M5V 303 1
12 V* EV Lac Er* 22 46 49.7312610268 +44 20 02.374381562   11.85 10.26 9.89   M4.0Ve 900 2
13 BD+19 5116 ** 23 31 52.17898 +19 56 14.1505 12.737 11.749 10.165 8.982 7.446 M4+M5 451 0
14 BD+19 5116B Er* 23 31 52.5753377942 +19 56 14.005026315   14.8   12.165   M4.0Ve 204 0
15 HD 224085 RS* 23 55 04.0520383542 +28 38 01.245426862 8.88 8.20   6.9   K2+IVeFe-1 729 0

To bookmark this query, right click on this link: simbad:objects in 2003A&A...397.1019H and select 'bookmark this link' or equivalent in the popup menu