2006A&A...452...15B


Query : 2006A&A...452...15B

2006A&A...452...15B - Astronomy and Astrophysics, volume 452, 15-24 (2006/6-2)

A viscous heating mechanism for the hot plasma in the Galactic center region.

BELMONT R. and TAGGER M.

Abstract (from CDS):

In addition to lines originating in a soft phase at ∼0.8keV and to cold molecular clouds, the X-ray spectra from the Galactic center region also exhibit properties similar to those of a diffuse, thin, very hot plasma at 8keV on a scale of hundreds of parsecs. This phase is surprising for more than one reason. First, such a hot plasma should not be bound to the Galactic plane and the power needed to sustain the escaping matter would be higher then any known source. Second, there is no known mechanism able to heat the plasma to more than a few keV. Recently we have suggested that, hydrogen having escaped, the hot plasma could be a helium plasma, heavy enough to be gravitationally confined. In this case, the required power is much more reasonable. We present here a possible heating mechanism which taps the gravitational energy of the molecular clouds. We note that the 8keV plasma is highly viscous and we show how viscous friction of molecular clouds flowing within the hot phase can dissipate energy in the gas and heat it. We detail the MHD wake of a spherical cloud by considering the different MHD waves the cloud can excite. We find that most of the energy is dissipated by the damping of Alfvenic perturbations in two possible manners, namely by non-linear effects and by a large scale curvature of the field lines. We find that the total dissipation rate depends on the field strength. For fields B≲200µG both mechanisms produce power comparable to or higher than the radiative losses; for strong fields B>1mG, only the curvature damping can balance the X-ray emission and requires a radius of curvature Rc≲100pc; whereas for intermediate fields, the total dissipation is more than one order of magnitude smaller, requiring a higher accretion rate. We note that the plasma parameters may be optimal to make the dissipation most efficient, suggesting a self-regulation mechanism. The loss of kinetic and gravitational energy also causes accretion of the clouds and may have significant action on the gas dynamics in this region between the large scale, bar dominated flow and the central accretion to the massive black hole.

Abstract Copyright:

Journal keyword(s): Galaxy: center - X-rays: ISM - ISM: clouds - ISM: magnetic fields - plasmas - ISM: kinematics and dynamics

Simbad objects: 2

goto Full paper

goto View the references in ADS

Number of rows : 2
N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2024
#notes
1 NAME Galactic Center reg 17 45 39.60213 -29 00 22.0000           ~ 14400 0
2 NAME Sgr A* X 17 45 40.03599 -29 00 28.1699           ~ 4386 3

To bookmark this query, right click on this link: simbad:objects in 2006A&A...452...15B and select 'bookmark this link' or equivalent in the popup menu