C.D.S. - SIMBAD4 rel 1.7 - 2021.04.22CEST03:52:58

2006A&A...453..661K - Astronomy and Astrophysics, volume 453, 661-678 (2006/7-2)

Non-spherical core collapse supernovae. II. The late-time evolution of globally anisotropic neutrino-driven explosions and their implications for SN 1987A.


Abstract (from CDS):

Two-dimensional simulations of strongly anisotropic supernova explosions of a nonrotating 15M blue supergiant progenitor are presented, which follow the hydrodynamic evolution from times shortly after shock formation until hours later. It is shown that explosions which around the time of shock revival are dominated by low-order unstable modes (i.e. by a superposition of the l=2 and l=1 modes, in which the former is strongest), are consistent with all major observational features of SN 1987A, in contrast to models which show high-order mode perturbations only and were published in earlier work. Among other items, the low-mode models exhibit final iron-group velocities of up to ∼ 3300km/s, strong mixing at the He/H composition interface, with hydrogen being mixed downward in velocity space to only 500km/s, and a final prolate anisotropy of the inner ejecta with a major to minor axis ratio of about 1.6. The success of low-mode explosions with an energy of about 2x1051 erg to reproduce these observed features is based on two effects: the (by 40%) larger initial maximum velocities of metal-rich clumps compared to our high-mode models, and the initial global deformation of the shock. The first effect protects the (fastest) clumps from interacting with the strong reverse shock that forms below the He/H composition interface, by keeping their propagation timescale through the He-core shorter than the reverse shock formation time. This ensures that the outward motion of the clumps remains always subsonic, and that thus their energy dissipation is minimal (in contrast to the supersonic case). The second effect is responsible for the strong inward mixing of hydrogen: the aspherical shock deposits large amounts of vorticity into the He/H interface layer at early times (around t=100s). This triggers the growth of a strong Richtmyer-Meshkov instability that results in a global anisotropy of the inner ejecta at late times (i.e. around t=10000s), although the shock itself has long become spherical by then. The simulations suggest a coherent picture, which explains the observational data of SN 1987A within the framework of the neutrino-driven explosion mechanism using a minimal set of assumptions. It is therefore argued that other paradigms, which are based on (more) controversial physics, may not be required to explain this event.

Abstract Copyright:

Journal keyword(s): hydrodynamics - instabilities - nucleosynthesis - shock waves - supernovae: general

Simbad objects: 2

goto Full paper

goto View the reference in ADS

Number of rows : 2

N Identifier Otype ICRS (J2000)
ICRS (J2000)
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2021
1 SN 1987A SN* 05 35 28.020 -69 16 11.07           SNIIpec 4579 2
2 NAME Cas A SNR 23 23 24.000 +58 48 54.00     14.30     ~ 2489 1

    Equat.    Gal    SGal    Ecl

To bookmark this query, right click on this link: simbad:objects in 2006A&A...453..661K and select 'bookmark this link' or equivalent in the popup menu


© Université de Strasbourg/CNRS

    • Contact