2014A&A...561A..50T


Query : 2014A&A...561A..50T

2014A&A...561A..50T - Astronomy and Astrophysics, volume 561A, 50-50 (2014/1-1)

Gas lines from the 5-Myr old optically thin disk around HD 141569A. Herschel observations and modeling.

THI W.-F., PINTE C., PANTIN E., AUGEREAU J.C., MEEUS G., MENARD F., MARTIN-ZAIEDI C., WOITKE P., RIVIERE-MARICHALAR P., KAMP I., CARMONA A., SANDELL G., EIROA C., DENT W., MONTESINOS B., ARESU G., MEIJERINK R., SPAANS M., WHITE G., ARDILA D., LEBRETON J., MENDIGUTIA I. and BRITTAIN S.

Abstract (from CDS):

The gas- and dust dissipation processes in disks around young stars remain uncertain despite numerous studies. At the distance of ∼99-116pc, HD 141569A is one of the nearest HerbigAe stars that is surrounded by a tenuous disk, probably in transition between a massive primordial disk and a debris disk. Atomic and molecular gases have been found in the structured 5-Myr old HD 141569A disk, making HD 141569A the perfect object within which to directly study the gaseous atomic and molecular component. We wish to constrain the gas and dust mass in the disk around HD 141569A. We observed the fine-structure lines of OI at 63 and 145 µm and the CII line at 157 µm with the PACS instrument onboard the Herschel Space Telescope as part of the open-time large program GASPS. We complemented the atomic line observations with archival Spitzer spectroscopic and photometric continuum data, a ground-based VLT-VISIR image at 8.6 µm, and 12CO fundamental ro-vibrational and pure rotational J=3-2 observations. We simultaneously modeled the continuum emission and the line fluxes with the Monte Carlo radiative transfer code MCFOST and the thermo-chemical code ProDiMo to derive the disk gas- and dust properties assuming no dust settling. The models suggest that the oxygen lines are emitted from the inner disk around HD 141569A, whereas the [CII] line emission is more extended. The CO submillimeter flux is emitted mostly by the outer disk. Simultaneous modeling of the photometric and line data using a realistic disk structure suggests a dust mass derived from grains with a radius smaller than 1 mm of ∼2.1x10–7 M and from grains with a radius of up to 1 cm of 4.9x10–6 M. We constrained the polycyclic aromatic hydrocarbons (PAH) mass to be between 2x10–11 and 1.4x10–10 M assuming circumcircumcoronene (C150H30) as the representative PAH. The associated PAH abundance relative to hydrogen is lower than those found in the interstellar medium (3x10–7) by two to three orders of magnitude. The disk around HD 141569A is less massive in gas (2.5 to 4.9x10–4 M or 67 to 164 M) and has a flat opening angle (<10%). We constrained simultaneously the silicate dust grain, PAH, and gas mass in a ∼5-Myr old Herbig Ae disk. The disk-averaged gas-to-dust-mass is most likely around 100, which is the assumed value at the disk formation despite the uncertainties due to disagreements between the different gas tracers. If the disk was originally massive, the gas and the dust would have dissipated at the same rate.

Abstract Copyright:

Journal keyword(s): stars: pre-main sequence - astrochemistry - protoplanetary disks

Simbad objects: 7

goto Full paper

goto View the references in ADS

Number of rows : 7
N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2024
#notes
1 V* ET Cha Or* 08 43 18.5853516024 -79 05 18.232481832     13.97     M4.0 86 0
2 V* TW Hya TT* 11 01 51.9053285064 -34 42 17.033218380   11.94 10.50 10.626 9.18 K6Ve 1892 1
3 HD 141569 Y*O 15 49 57.7482550392 -03 55 16.341617064 7.22 7.20 7.12 7.00 7.04 A2VekB9mB9(_lB) 540 0
4 LDN 183 MoC 15 54 12.2 -02 49 42           ~ 759 1
5 * eps Oph PM* 16 18 19.2902245358 -04 41 33.047349888 4.95 4.21 3.23 2.54 2.05 G9.5IIIbFe-0.5 235 0
6 HD 163296 Ae* 17 56 21.2881851168 -21 57 21.871819008 7.00 6.93 6.85 6.86 6.67 A3VaekA1mA1 1110 0
7 HD 169142 Ae* 18 24 29.7799891464 -29 46 49.327400568   8.42 8.16     F1VekA3mA3_lB? 448 0

To bookmark this query, right click on this link: simbad:objects in 2014A&A...561A..50T and select 'bookmark this link' or equivalent in the popup menu