C.D.S. - SIMBAD4 rel 1.7 - 2020.07.11CEST21:12:20

2016A&A...596A..81P - Astronomy and Astrophysics, volume 596A, 81-81 (2016/12-1)

Can dead zones create structures like a transition disk?


Abstract (from CDS):

Context. Regions of low ionisation where the activity of the magneto-rotational instability is suppressed, the so-called dead zones, have been suggested to explain gaps and asymmetries of transition disks. Dead zones are therefore a potential cause for the observational signatures of transition disks without requiring the presence of embedded planets.
Aims. We investigate the gas and dust evolution simultaneously assuming simplified prescriptions for a dead zone and a magnetohydrodynamic (MHD) wind acting on the disk. We explore whether the resulting gas and dust distribution can create signatures similar to those observed in transition disks.
Methods. We imposed a dead zone and/or an MHD wind in the radial evolution of gas and dust in protoplanetary disks. For the dust evolution, we included the transport, growth, and fragmentation of dust particles. To compare with observations, we produced synthetic images in scattered optical light and in thermal emission at mm wavelengths.
Results. In all models with a dead zone, a bump in the gas surface density is produced that is able to efficiently trap large particles (≳1mm) at the outer edge of the dead zone. The gas bump reaches an amplitude of a factor of ∼5, which can be enhanced by the presence of an MHD wind that removes mass from the inner disk. While our 1D simulations suggest that such a structure can be present only for ∼1Myr, the structure may be maintained for a longer time when more realistic 2D/3D simulations are performed. In the synthetic images, gap-like low-emission regions are seen at scattered light and in thermal emission at mm wavelengths, as previously predicted in the case of planet-disk interaction.
Conclusions. Main signatures of transition disks can be reproduced by assuming a dead zone in the disk, such as gap-like structure in scattered light and millimetre continuum emission, and a lower gas surface density within the dead zone. Previous studies showed that the Rossby wave instability can also develop at the edge of such dead zones, forming vortices and also creating asymmetries.

Abstract Copyright: © ESO, 2016

Journal keyword(s): planets and satellites: formation - protoplanetary disks - magnetohydrodynamics (MHD)

Simbad objects: 4

goto Full paper

goto View the reference in ADS

Number of rows : 4

N Identifier Otype ICRS (J2000)
ICRS (J2000)
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2020
1 V* HL Tau Or* 04 31 38.471952 +18 13 58.08504   15.89 14.49 14.39   K5 1201 0
2 EM* LkCa 15 Or* 04 39 17.7912813350 +22 21 03.387667491   13.01 12.03 11.61   K5:Ve 552 1
3 HD 142527 Ae* 15 56 41.8888096574 -42 19 23.245384377   9.04 8.34     F6III 467 1
4 IRAS 16245-2423 TT* 16 27 37.1911764648 -24 30 35.031583716       16.66 14.67 B5-F2 235 0

    Equat.    Gal    SGal    Ecl

To bookmark this query, right click on this link: simbad:objects in 2016A&A...596A..81P and select 'bookmark this link' or equivalent in the popup menu


© Université de Strasbourg/CNRS

    • Contact