2018A&A...617A.100B


C.D.S. - SIMBAD4 rel 1.7 - 2020.08.14CEST08:15:21

2018A&A...617A.100B - Astronomy and Astrophysics, volume 617A, 100-100 (2018/9-1)

Fragmentation and disk formation during high-mass star formation. IRAM NOEMA (Northern Extended Millimeter Array) large program CORE.

BEUTHER H., MOTTRAM J.C., AHMADI A., BOSCO F., LINZ H., HENNING T., KLAASSEN P., WINTERS J.M., MAUD L.T., KUIPER R., SEMENOV D., GIESER C., PETERS T., URQUHART J.S., PUDRITZ R., RAGAN S.E., FENG S., KETO E., LEURINI S., CESARONI R., BELTRAN M., PALAU A., SANCHEZ-MONGE A., GALVAN-MADRID R., ZHANG Q., SCHILKE P., WYROWSKI F., JOHNSTON K.G., LONGMORE S.N., LUMSDEN S., HOARE M., MENTEN K.M. and CSENGERI T.

Abstract (from CDS):


Context. High-mass stars form in clusters, but neither the early fragmentation processes nor the detailed physical processes leading to the most massive stars are well understood.
Aims. We aim to understand the fragmentation, as well as the disk formation, outflow generation, and chemical processes during high-mass star formation on spatial scales of individual cores.
Methods. Using the IRAM Northern Extended Millimeter Array (NOEMA) in combination with the 30 m telescope, we have observed in the IRAM large program CORE the 1.37mm continuum and spectral line emission at high angular resolution (∼0.4'') for a sample of 20 well-known high-mass star-forming regions with distances below 5.5 kpc and luminosities larger than 104L.
Results. We present the overall survey scope, the selected sample, the observational setup, and the main goals of CORE. Scientifically, we concentrated on the mm continuum emission on scales on the order of 1000 AU. We detect strong mm continuum emission from all regions, mostly due to the emission from cold dust. The fragmentation properties of the sample are diverse. We see extremes where some regions are dominated by a single high-mass core whereas others fragment into as many as 20 cores. A minimum-spanning-tree analysis finds fragmentation at scales on the order of the thermal Jeans length or smaller suggesting that turbulent fragmentation is less important than thermal gravitational fragmentation. The diversity of highly fragmented vs. singular regions can be explained by varying initial density structures and/or different initial magnetic field strengths.
Conclusions. A large sample of high-mass star-forming regions at high spatial resolution allows us to study the fragmentation properties of young cluster-forming regions. The smallest observed separations between cores are found around the angular resolution limit which indicates that further fragmentation likely takes place on even smaller spatial scales. The CORE project with its numerous spectral line detections will address a diverse set of important physical and chemical questions in the field of high-mass star formation.

Abstract Copyright: © ESO 2018

Journal keyword(s): stars: formation - stars: massive - stars: general - stars: rotation - instrumentation: interferometers

Simbad objects: 34

goto Full paper

goto View the reference in ADS

Number of rows : 34

N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2020
#notes
1 [KSP2003] J022531.18+620624.5 HII 02 25 31.18 +62 06 24.5           O8V-B0.5V 95 1
2 NAME W 3 OH HII 02 27 04.1 +61 52 22           ~ 944 2
3 W 3 MoC 02 27 04.10 +61 52 27.1           ~ 965 3
4 W 3(H2O) Mas 02 27 04.6 +61 52 25           ~ 124 0
5 MSX6C G138.2957+01.5552 Y*O 03 01 31.253 +60 29 13.07           ~ 20 0
6 MSX6C G139.9091+00.1969 Y*O 03 07 24.0 +58 30 49           ~ 6 0
7 3C 84 Sy2 03 19 48.1597607660 +41 30 42.114155434   13.10 12.48 11.09   ~ 3555 3
8 EM* LkHA 101 Em* 04 30 14.438 +35 16 24.03   17.91 15.71 13.33   F 297 1
9 NAME Orion-KL SFR 05 35 14.16 -05 22 21.5           ~ 2006 1
10 NAME Ori A MoC 05 38 -07.1           ~ 2681 0
11 NAME ORI MOL CLOUD MoC 05 56 -01.8           ~ 852 1
12 3C 273 BLL 12 29 06.6996828061 +02 03 08.598846466   13.05 14.830 14.11   ~ 5326 1
13 LDN 57 DNe 17 22 38.2 -23 49 34           ~ 283 1
14 [CCE98b] 011.11-0.12 Cld 18 10.5 -19 23           ~ 85 1
15 NAME IRDC 18310-4 cor 18 33 39.42 -08 21 10.4           ~ 14 0
16 NAME Dragon Nebula DNe 18 42 50.6 -04 03 30           ~ 113 0
17 NAME SH 2-87 IRS 1 HII 19 46 20.130 +24 35 29.43           ~ 14 0
18 NAME Cygnus 2N HII 20 21 44.1 +37 26 40           ~ 110 1
19 SH 2-106 HII 20 27 26.8 +37 22 49           ~ 410 2
20 RAFGL 2591 Y*O 20 29 25.03656 +40 11 20.3316           ~ 570 0
21 EM* MWC 349 ** 20 32 45.499080 +40 39 36.74124   15.88 13.15 12.13   Bep 708 0
22 MSX6C G084.9505-00.6910 HII 20 55 32.4 +44 06 10           ~ 3 0
23 IRAS 21078+5211 HII 21 09 25.2 +52 23 44           ~ 41 0
24 V* V645 Cyg Ae* 21 39 58.2775729406 +50 14 21.002745087   14.23 13.10 13.82   O6/9eq 255 0
25 MSX6C G100.3779-03.5784 Y*O 22 16 10.3651 +52 21 34.113           ~ 9 0
26 3C 454.3 QSO 22 53 57.74798 +16 08 53.5611   16.57 16.10 15.22   ~ 2511 2
27 NAME Cep A HW 2 Y*O 22 56 17.9 +62 01 49           B0.5 196 0
28 MSX6C G108.7575-00.9863 Y*O 22 58 47.5 +58 45 01           ~ 7 0
29 IRAS 23033+5951 Y*O 23 05 25.16112 +60 08 15.4428           ~ 78 0
30 NGC 7538S Y*O 23 13 44.8 +61 26 51           ~ 73 1
31 [WBN74] NGC 7538 IRS 1 Y*O 23 13 45.318 +61 28 11.69           ~ 367 3
32 IRAS 23118+6110 Y*O 23 14 01.63 +61 27 20.2           ~ 342 0
33 IRAS 23151+5912 HII 23 17 21.0 +59 28 49           ~ 93 0
34 Mol 160 Rad 23 40 54.5 +61 10 28           ~ 88 0

    Equat.    Gal    SGal    Ecl

To bookmark this query, right click on this link: simbad:objects in 2018A&A...617A.100B and select 'bookmark this link' or equivalent in the popup menu


2020.08.14-08:15:21

© Université de Strasbourg/CNRS

    • Contact