2019A&A...627A..23E -
Astronomy and Astrophysics, volume 627A, 23-23 (2019/7-1)
Euclid preparation. III. Galaxy cluster detection in the wide photometric survey, performance and algorithm selection.
EUCLID COLLABORATION, ADAM R., VANNIER M., MAUROGORDATO S., BIVIANO A., ADAMI C., ASCASO B., BELLAGAMBA F., BENOIST C., CAPPI A., DIAZ-SANCHEZ A., DURRET F., FARRENS S., GONZALEZ A.H., IOVINO A., LICITRA R., MATURI M., MEI S., MERSON A., MUNARI E., PELLO R., RICCI M., ROCCI P.F., RONCARELLI M., SARRON F., AMOURA Y., ANDREON S., APOSTOLAKOS N., ARNAUD M., BARDELLI S., BARTLETT J., BAUGH C.M., BORGANI S., BRODWIN M., CASTANDER F., CASTIGNANI G., CUCCIATI O., DE LUCIA G., DUBATH P., FOSALBA P., GIOCOLI C., HOEKSTRA H., MAMON G.A., MELIN J.B., MOSCARDINI L., PALTANI S., RADOVICH M., SARTORIS B., SCHULTHEIS M., SERENO M., WELLER J., BURIGANA C., CARVALHO C.S., CORCIONE L., KURKI-SUONIO H., LILJE P.B., SIRRI G., TOLEDO-MOREO R. and ZAMORANI G.
Abstract (from CDS):
Galaxy cluster counts in bins of mass and redshift have been shown to be a competitive probe to test cosmological models. This method requires an efficient blind detection of clusters from surveys with a well-known selection function and robust mass estimates, which is particularly challenging at high redshift. The Euclid wide survey will cover 15000deg2 of the sky, avoiding contamination by light from our Galaxy and our solar system in the optical and near-infrared bands, down to magnitude 24 in the H-band. The resulting data will make it possible to detect a large number of galaxy clusters spanning a wide-range of masses up to redshift ∼2 and possibly higher. This paper presents the final results of the Euclid Cluster Finder Challenge (CFC), fourth in a series of similar challenges. The objective of these challenges was to select the cluster detection algorithms that best meet the requirements of the Euclid mission. The final CFC included six independent detection algorithms, based on different techniques, such as photometric redshift tomography, optimal filtering, hierarchical approach, wavelet and friend-of-friends algorithms. These algorithms were blindly applied to a mock galaxy catalog with representative Euclid-like properties. The relative performance of the algorithms was assessed by matching the resulting detections to known clusters in the simulations down to masses of M200∼1013.25M☉. Several matching procedures were tested, thus making it possible to estimate the associated systematic effects on completeness to <3%. All the tested algorithms are very competitive in terms of performance, with three of them reaching >80% completeness for a mean purity of 80% down to masses of 1014M☉ and up to redshift z=2. Based on these results, two algorithms were selected to be implemented in the Euclid pipeline, the Adaptive Matched Identifier of Clustered Objects (AMICO) code, based on matched filtering, and the PZWav code, based on an adaptive wavelet approach.
(Ref) Object type as listed in the reference "Ref"
(acronym) Object type linked to the acronym according to the original reference
() Anterior to 2007, before we can link the objet type to a reference, or given by the CDS team in some particular cases
Other object types:
ClG
(2010A&A,ACO,...),
X
(2A,3A,...),
C?G
(2014A&A,XCLASS),
GrG
(RASSCALS,[N93]),
gLe
(2011A&A),
gam
(IGR,INTREF),
Rad
(DB)
Syntax of coordinates is : "ra dec (wtype) [error ellipse] quality bibcode" :
ra dec : right ascension and declination (unit and frame defined according to your Output Options)
Grey values are increasing the original precision due to the computation of frame transformations
(wtype) : wavelength class for the origin of the coordinates (Rad, mm, IR, Optical, UV, Xray, Gam)
[error ellipse] : measurement uncertainty, on (ra,dec) if the positional angle is 90 degrees, on (majaxis,minaxis) otherwise (in mas at defined epoch in the original catalogue),
position angle (in degrees North celestial pole to East)
Syntax of coordinates is : "ra dec (wtype) [error ellipse] quality bibcode" :
ra dec : right ascension and declination (unit and frame defined according to your Output Options)
Grey values are increasing the original precision due to the computation of frame transformations
(wtype) : wavelength class for the origin of the coordinates (Rad, mm, IR, Optical, UV, Xray, Gam)
[error ellipse] : measurement uncertainty, on (ra,dec) if the positional angle is 90 degrees, on (majaxis,minaxis) otherwise (in mas at defined epoch in the original catalogue),
position angle (in degrees North celestial pole to East)
quality : flag of quality
E ≥ 10"
D : 1-10" (and some old data)
C : 0.1-1"
B : 0.01-0.1" + 2MASS, Tyc
A : VLBI, Hipparcos
bibcode : bibcode of the coordinates reference
FK4
coord.
(ep=B1950 eq=1950) :
12 57 19.64 +28 10 54.4
[
]
Syntax of coordinates is : "ra dec (wtype) [error ellipse] quality bibcode" :
ra dec : right ascension and declination (unit and frame defined according to your Output Options)
Grey values are increasing the original precision due to the computation of frame transformations
(wtype) : wavelength class for the origin of the coordinates (Rad, mm, IR, Optical, UV, Xray, Gam)
[error ellipse] : measurement uncertainty, on (ra,dec) if the positional angle is 90 degrees, on (majaxis,minaxis) otherwise (in mas at defined epoch in the original catalogue),
position angle (in degrees North celestial pole to East)
quality : flag of quality
E ≥ 10"
D : 1-10" (and some old data)
C : 0.1-1"
B : 0.01-0.1" + 2MASS, Tyc
A : VLBI, Hipparcos
bibcode : bibcode of the coordinates reference
Gal
coord.
(ep=J2000) :
056.48504 +87.99927
[
]
Syntax of radial velocity (or/and redshift) is : "value [error] (wavelength) quality bibcode"
value : radial velocity or/and redshift (Heliocentric frame) according to your Output Options
(redshift may be not displayed if the data value is <0 and the database inside value is a radial velocity)
[error] : error of the corresponding value displayed before
(wavelength) : wavelength range of the measurement : Rad, mm, IR, Opt, UV, Xray, Gam or '∼'(unknown)
quality : flag of quality ( A=best quality -> E=worst quality, {� } =unknown quality)
References (4730 between 1850 and 2024) (Total 4730)
Simbad bibliographic survey began in 1850 for stars (at least bright stars) and in 1983 for all other objects (outside the solar system).
Follow
new references on this object
Annotations :
Annotations allow a user to add a note or report an error concerning the astronomical object and its data. It requires registration to post a note. See description . Please, have a look at Best practices. The list of all annotations to SIMBAD objects can be found here .
To bookmark this query, right click on this link: simbad:objects in 2019A&A...627A..23E and select 'bookmark this link' or equivalent in the popup menu