other query modes : |
Identifier query |
Coordinate query |
Criteria query |
Reference query |
Basic query |
Script submission |
TAP |
Output options |
Help |
Query : 2020A&A...636A..94V |
2020A&A...636A..94V - Astronomy and Astrophysics, volume 636A, 94-94 (2020/4-1)
Deep Horizon: A machine learning network that recovers accreting black hole parameters.
VAN DER GUCHT J., DAVELAAR J., HENDRIKS L., PORTH O., OLIVARES H., MIZUNO Y., FROMM C.M. and FALCKE H.
Abstract (from CDS):
Abstract Copyright: © ESO 2020
Journal keyword(s): accretion, accretion disks - black hole physics - radiative transfer - methods: data analysis
Simbad objects: 2
Number of rows : 2 |
N | Identifier | Otype |
ICRS (J2000) RA |
ICRS (J2000) DEC |
Mag U | Mag B | Mag V | Mag R | Mag I | Sp type |
#ref
1850 - 2023 |
#notes |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | M 87 | AGN | 12 30 49.42338414 | +12 23 28.0436859 | 10.16 | 9.59 | 8.63 | 7.49 | ~ | 6931 | 3 | |
2 | NAME Sgr A* | X | 17 45 40.03599 | -29 00 28.1699 | ~ | 4143 | 3 |
To bookmark this query, right click on this link: simbad:objects in 2020A&A...636A..94V and select 'bookmark this link' or equivalent in the popup menu
© Université de Strasbourg/CNRS
• Contact