1998A&A...329..911R


Query : 1998A&A...329..911R

1998A&A...329..911R - Astronomy and Astrophysics, volume 329, 911-919 (1998/1-3)

Nonlinear winding of large-scale magnetic fields in spiral galaxies.

ROHDE R., ELSTNER D. and RUEDIGER G.

Abstract (from CDS):

A new-developed 3D numerical code is applied to an uniform external (primordial) magnetic field subject to a complex flow pattern representing the situation in a turbulent spiral galaxy. The spiral arms are defined by the radial-azimuthal profiles of density and the turbulent velocity, but they do not yet possess any own large-scale velocity field. No dynamo alpha is assumed to exist, but all the known turbulence effects such as eddy diamagnetism and turbulent pumping are involved. Two different models are followed: The (nonaxisymmetric) external magnetic field is considered as an initial-value and/or as a boundary condition. In the first case the decay of the magnetic field is rather fast. The initial field cannot survive more than 500Myr. In its early times the magnetic field is concentrated between the spirals but later it is strongly wound up by the differential rotation. Any amplification of the magnetic energy does not appear. The nonlinear diffusivity quenching only plays a role for small eddy diffusivity. If the galaxy is embedded in an external intergalactic magnetic field there is an amplification of the magnetic energy by a factor of 10. But very soon the magnetic spirals have been transformed into rings and after about 1.5Gyr the galaxy is nearly field-free. Our results confirm the idea that primordial magnetic fields in galaxies are unable to become old. If both the gaseous and the magnetic spirals had a common origin, the gaseous spirals are revealed here as young phenomena. Tuning the pattern speed of the spirals an exceptional amplification of the magnetic field is found in case of `resonance' of the pattern speed and a magnetic drift velocity. Our calculations show that the maximal field then remains in the interarm region. We interpret the peak amplification as being due to the fact that the turbulence in the interarm regions is assumed as weak hence the diffusion there is strongly reduced. The differential rotation then amplifies the initial field maximally while the field decay is delayed.

Abstract Copyright:

Journal keyword(s): MHD - turbulence - ISM: magnetic fields - galaxies: ISM

Simbad objects: 3

goto View the references in ADS

Number of rows : 3
N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2022
#notes
1 M 81 Sy2 09 55 33.1726556496 +69 03 55.062505368   7.89 6.94     ~ 4184 3
2 NGC 4414 GiG 12 26 27.1276893168 +31 13 24.626206488 11.12 10.96 10.12     ~ 540 2
3 NGC 6946 H2G 20 34 52.332 +60 09 13.24   10.5       ~ 2379 2

To bookmark this query, right click on this link: simbad:objects in 1998A&A...329..911R and select 'bookmark this link' or equivalent in the popup menu


2022.06.27-16:29:40

© Université de Strasbourg/CNRS

    • Contact