2005A&A...433..647A


C.D.S. - SIMBAD4 rel 1.7 - 2020.01.26CET13:11:18

2005A&A...433..647A - Astronomy and Astrophysics, volume 433, 647-658 (2005/4-2)

Spectroscopic determination of photospheric parameters and chemical abundances of 6 K-type stars.

AFFER L., MICELA G., MOREL T., SANZ-FORCADA J. and FAVATA F.

Abstract (from CDS):

High resolution, high -S/N- ratio optical spectra have been obtained for a sample of 6 K-type dwarf and subgiant stars, and have been analysed with three different LTE methods in order to derive detailed photospheric parameters and abundances and to compare the characteristics of analysis techniques. The results have been compared with the aim of determining the most robust method to perform complete spectroscopic analyses of K-type stars, and in this perspective the present work must be considered as a pilot study. In this context we have determined the abundance ratios with respect to iron of several elements. In the first method the photospheric parameters (Teff, logg, and ξ) and metal abundances are derived using measured equivalent widths and Kurucz LTE model atmospheres as input for the MOOG software code. The analysis proceeds in an iterative way, and relies on the excitation equilibrium of the FeI lines for determining the effective temperature and microturbulence, and on the ionization equilibrium of the FeI and FeII lines for determining the surface gravity and the metallicity. The second method follows a similar approach, but discards the FeI low excitation potential transitions (which are potentially affected by non-LTE effects) from the initial line list, and relies on the B-V colour index to determine the temperature. The third method relies on the detailed fitting of the 6162Å CaI line to derive the surface gravity, using the same restricted line list as the second method.
Method. 1 and 3 give consistent results for the program stars; in particular the comparison between the results obtained shows that the FeI low-excitation potential transitions do not appear significantly affected by non-LTE effects (at least for the subgiant stars), as suggested by the good agreement of the atmospheric parameters and chemical abundances derived. The second method leads to systematically lower Teff and logg values with respect to the first one, and a similar trend is shown by the chemical abundances (with the exception of the oxygen abundance). These differences, apart from residual non-LTE effects, may be a consequence of the colour-Teff scale used. The α-elements have abundance ratios consistent with the solar values for all the program stars, as expected for ``normal'' disk stars. The first method appears to be the most reliable one, as it is self-consistent, it always leads to convergent solutions and the results obtained are in good agreement with previous determinations in the literature.

Abstract Copyright:

Journal keyword(s): stars: individual: HD 4628 - stars: individual: HD 10780 - stars: individual: HD 23249 (δ Eri) - individual: HD 198149 - stars: (η Cep) - stars: individual: HD 201091 (61 Cyg A) - stars: individual: HD 222404 (γ Cep)

Simbad objects: 7

goto Full paper

goto View the reference in ADS

Number of rows : 7

N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2020
#notes
1 HD 4628 PM* 00 48 22.9763438736 +05 16 50.209562003 7.22 6.64 5.74 4.99 4.52 K2.5V 440 0
2 HD 10780 BY* 01 47 44.8336250528 +63 51 09.007331430 6.84 6.44 5.63 4.99 4.60 K0V 310 0
3 * del Eri RS* 03 43 14.9008787 -09 45 48.208444 5.13 4.46 3.54 2.82 2.32 K0+IV 538 0
4 * alf Boo RG* 14 15 39.67207 +19 10 56.6730 2.46 1.18 -0.05 -1.03 -1.68 K1.5IIIFe-0.5 2111 0
5 * eta Cep PM* 20 45 17.3755540 +61 50 19.616737 4.960 4.320 3.410 2.76 2.27 K0IV 416 0
6 * 61 Cyg A BY* 21 06 53.9396100677 +38 44 57.897024357 7.50 6.39 5.21 4.19 3.54 K5V 936 0
7 * gam Cep SB* 23 39 20.9015326708 +77 37 56.505477975 5.190 4.250   2.6   K1III-IVCN1 545 1

    Equat.    Gal    SGal    Ecl

To bookmark this query, right click on this link: simbad:objects in 2005A&A...433..647A and select 'bookmark this link' or equivalent in the popup menu


2020.01.26-13:11:18

© Université de Strasbourg/CNRS

    • Contact