2005A&A...443..643Y -
Astronomy and Astrophysics, volume 443, 643-648 (2005/11-4)
Evolution of rapidly rotating metal-poor massive stars towards gamma-ray bursts.
YOON S.-C. and LANGER N.
Abstract (from CDS):
Recent models of rotating massive stars including magnetic fields prove it difficult for the cores of single stars to retain enough angular momentum to produce a collapsar and gamma-ray burst. At low metallicity, even very massive stars may retain a massive hydrogen envelope due to the weakness of the stellar winds, posing an additional obstacle to the collapsar model. Here, we consider the evolution of massive, magnetic stars where rapid rotation induces almost chemically homogeneous evolution. We find that in this case, the requirements of the collapsar model are rather easily fulfilled if the metallicity is sufficiently small: 1) rapidly rotating helium stars are formed without the need to remove the hydrogen envelope, avoiding mass-loss induced spin-down. 2) Angular momentum transport from the helium core to hydrogen envelope by magnetic torques is insignificant. We demonstrate this by calculating evolutionary models of massive stars with various metallicities, and derive an upper metallicity limit for this scenario based on currently proposed mass loss rates. Our models also suggest the existence of a lower CO-core mass limit of about 10M☉ - which relates to an initial mass of only about 20M☉ within our scenario - for GRB production. We argue that the relative importance of the considered GRB progenitor channel, compared to any channel related to binary stars, may increase with decreasing metallicity, and that this channel might be the major path to GRBs from first stars.
(Ref) Object type as listed in the reference "Ref"
(acronym) Object type linked to the acronym according to the original reference
() Anterior to 2007, before we can link the objet type to a reference, or given by the CDS team in some particular cases
Other object types:
GrG
()
Syntax of coordinates is : "ra dec (wtype) [error ellipse] quality bibcode" :
ra dec : right ascension and declination (unit and frame defined according to your Output Options)
Grey values are increasing the original precision due to the computation of frame transformations
(wtype) : wavelength class for the origin of the coordinates (Rad, mm, IR, Optical, UV, Xray, Gam)
[error ellipse] : measurement uncertainty, on (ra,dec) if the positional angle is 90 degrees, on (majaxis,minaxis) otherwise (in mas at defined epoch in the original catalogue),
position angle (in degrees North celestial pole to East)
quality : flag of quality
E ≥ 10"
D : 1-10" (and some old data)
C : 0.1-1"
B : 0.01-0.1" + 2MASS, Tyc
A : VLBI, Hipparcos
bibcode : bibcode of the coordinates reference
ICRS
coord.
(ep=J2000) :
03 00 00.0 -71 00 00
[
]
E
~
Syntax of coordinates is : "ra dec (wtype) [error ellipse] quality bibcode" :
ra dec : right ascension and declination (unit and frame defined according to your Output Options)
Grey values are increasing the original precision due to the computation of frame transformations
(wtype) : wavelength class for the origin of the coordinates (Rad, mm, IR, Optical, UV, Xray, Gam)
[error ellipse] : measurement uncertainty, on (ra,dec) if the positional angle is 90 degrees, on (majaxis,minaxis) otherwise (in mas at defined epoch in the original catalogue),
position angle (in degrees North celestial pole to East)
quality : flag of quality
E ≥ 10"
D : 1-10" (and some old data)
C : 0.1-1"
B : 0.01-0.1" + 2MASS, Tyc
A : VLBI, Hipparcos
bibcode : bibcode of the coordinates reference
FK4
coord.
(ep=B1950 eq=1950) :
02 59 44.2 -71 11 49
[
]
Syntax of coordinates is : "ra dec (wtype) [error ellipse] quality bibcode" :
ra dec : right ascension and declination (unit and frame defined according to your Output Options)
Grey values are increasing the original precision due to the computation of frame transformations
(wtype) : wavelength class for the origin of the coordinates (Rad, mm, IR, Optical, UV, Xray, Gam)
[error ellipse] : measurement uncertainty, on (ra,dec) if the positional angle is 90 degrees, on (majaxis,minaxis) otherwise (in mas at defined epoch in the original catalogue),
position angle (in degrees North celestial pole to East)
References (5857 between 1850 and 2021) (Total 5857)
Simbad bibliographic survey began in 1850 for stars (at least bright stars) and in 1983 for all other objects (outside the solar system).
Follow
new references on this object
Observing logs
Annotations :
Annotations allow a user to add a note or report an error concerning the astronomical object and its data. It requires registration to post a note. See description . Please, have a look at Best practices. The list of all annotations to SIMBAD objects can be found here .
To bookmark this query, right click on this link: simbad:objects in 2005A&A...443..643Y and select 'bookmark this link' or equivalent in the popup menu