C.D.S. - SIMBAD4 rel 1.7 - 2019.10.16CEST18:04:39

2007A&A...464..193A - Astronomy and Astrophysics, volume 464, 193-200 (2007/3-2)

Overluminous HNC line emission in Arp 220, NGC 4418 and Mrk 231. Global IR pumping or XDRs?


Abstract (from CDS):

In recent studies of 3mm J=1-0 HNC emission from galaxies it is found that the emission is often bright which is unexpected in warm, star forming clouds. We propose that the main cause for the luminous HNC line emission is the extreme radiative and kinematical environment in starburst and active nuclei. To determine the underlying excitational and chemical causes behind the luminous HNC emission in active galaxies and to establish how HNC emission may serve to identify important properties of the nuclear source. We present mm and submm JCMT, IRAM 30m and CSO observations of the J=3-2 line of HNC and its isomer HCN in three luminous galaxies and J=4-3 HNC observations of one galaxy. The observations are discussed in terms of physical conditions and excitation as well as in the context of X-ray influenced chemistry. The ultraluminous mergers Arp 220 and Mrk 231 and the luminous IR galaxy NGC 4418 show the HNC J 3-2 emission being brighter than the HCN 3-2 emission by factors of 1.5 to 2. We furthermore report the detection of HNC J=4-3 in Mrk 231. Overluminous HNC emission is unexpected in warm molecular gas in ultraluminous galaxies since I(HNC)>I(HCN) is usually taken as a signature of cold (10-20K) dark clouds. Since the molecular gas of the studied galaxies is warm (Tk>40K), we present two alternative explanations to the overluminous HNC: a) HNC excitation is affected by pumping of the rotational levels through the mid-infrared continuum and b) XDRs (X-ray Dominated Regions) influence the abundances of HNC. HNC may become pumped at 21.5µm brightness temperatures of TB>50K, suggesting that HNC-pumping could be common in warm, ultraluminous galaxies with compact IR-nuclei. This means that the HNC emission is no longer dominated by collisions and its luminosity may not be used to deduce information on gas density. On the other hand, all three galaxies are either suspected of having buried AGN - or the presence of AGN is clear (Mrk 231) - indicating that X-rays may affect the ISM chemistry. We conclude that both the pumping and XDR alternatives imply molecular cloud ensembles distinctly different from those of typical starforming regions in the Galaxy, or the ISM of less extreme starburst galaxies. The HNC molecule shows the potential of becoming an additional important tracer of extreme nuclear environments.

Abstract Copyright:

Journal keyword(s): galaxies: evolution - galaxies: general - galaxies: starburst - galaxies: active - radio lines: galaxies - ISM: molecules

Simbad objects: 6

goto Full paper

goto View the reference in ADS

Number of rows : 6

N Identifier Otype ICRS (J2000)
ICRS (J2000)
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2019
1 RAFGL 618 pA* 04 42 53.6245215366 +36 06 53.397219192   16.32   12.59   C-rich 943 0
2 NAME Orion-KL SFR 05 35 14.16 -05 22 21.5           ~ 1937 1
3 NGC 4355 Sy2 12 26 54.628 -00 52 39.51   14.21 13.37     ~ 384 2
4 Mrk 231 Sy1 12 56 14.2340989340 +56 52 25.238555193   14.68 13.84     ~ 1733 3
5 QSO J1415+1129 QSO 14 15 46.25 +11 29 43.4   17.63 17.23     ~ 580 1
6 IC 4553 SyG 15 34 57.22396 +23 30 11.6084   14.76 13.88     ~ 2617 4

    Equat.    Gal    SGal    Ecl

To bookmark this query, right click on this link: simbad:objects in 2007A&A...464..193A and select 'bookmark this link' or equivalent in the popup menu


© Université de Strasbourg/CNRS

    • Contact