C.D.S. - SIMBAD4 rel 1.7 - 2021.03.03CET11:08:06

2007A&A...469..687C - Astronomy and Astrophysics, volume 469, 687-706 (2007/7-2)

Three-dimensional hydrodynamical simulations of surface convection in red giant stars. Impact on spectral line formation and abundance analysis.


Abstract (from CDS):

We investigate the impact of realistic three-dimensional (3D) hydrodynamical model atmospheres of red giant stars at different metallicities on the formation of spectral lines of a number of ions and molecules. We carry out realistic, ab initio, 3D, hydrodynamical simulations of surface convection at the surface of red giant stars with varying effective temperatures and metallicities. We use the convection simulations as time-dependent hydrodynamical model stellar atmospheres to calculate spectral lines of a number of ions (LiI, OI, NaI, MgI, CaI, FeI, and FeII) and molecules (CH, NH, and OH) under the assumption of local thermodynamic equilibrium (LTE). We carry out a differential comparison of the line strengths computed in 3D with the results of analogous line formation calculations for classical, 1D, hydrostatic, plane-parallel marcs model atmospheres in order to estimate the impact of 3Dmodels on the derivation of elemental abundances. The temperature and density inhomogeneities and correlated velocity fields in 3Dmodels, as well as the differences between the mean 3Dstratifications and corresponding 1Dmodel atmospheres significantly affect the predicted strengths of spectral lines. Under the assumption of LTE, the low atmospheric temperatures encountered in 3Dmodel atmospheres of very metal-poor giant stars cause spectral lines from neutral species and molecules to appear stronger than within the framework of 1Dmodels. As a consequence, elemental abundances derived from these lines using 3Dmodels are significantly lower than according to 1Danalyses. In particular, the differences between 3Dand 1Dabundances of C, N, and O derived from CH, NH, and OH weak low-excitation lines are found to be in the range -0.5dex to -1.0dex for the the red giant stars at [Fe/H]=-3 considered here. At this metallicity, large negative corrections (about -0.8dex) are also found, in LTE, for weak low-excitation FeI lines. We caution, however, that the neglected departures from LTE might be significant for these and other elements and comparable to the effects due to stellar granulation.

Abstract Copyright:

Journal keyword(s): convection - hydrodynamics - line: formation - stars: abundances - stars: late-type - stars: atmospheres

Simbad objects: 3

goto Full paper

goto View the reference in ADS

Number of rows : 3

N Identifier Otype ICRS (J2000)
ICRS (J2000)
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2021
1 HE 0107-5240 Pe* 01 09 29.1554552993 -52 24 34.203535506   15.89 15.07 15.10 14.283 CEMP-no 230 0
2 * bet Gem PM* 07 45 18.94987 +28 01 34.3160 3.00 2.14 1.14 0.39 -0.11 K0IIIb 1059 1
3 NAME Local Group GrG ~ ~           ~ 7184 0

    Equat.    Gal    SGal    Ecl

To bookmark this query, right click on this link: simbad:objects in 2007A&A...469..687C and select 'bookmark this link' or equivalent in the popup menu


© Université de Strasbourg/CNRS

    • Contact