C.D.S. - SIMBAD4 rel 1.7 - 2021.03.03CET03:59:22

2008A&A...478..335B - Astronomy and Astrophysics, volume 478, 335-351 (2008/2-1)

Evolution of chemical abundances in Seyfert galaxies.


Abstract (from CDS):

We study the chemical evolution of spiral bulges hosting Seyfert nuclei, based on updated chemical and spectro-photometrical evolution models for the bulge of our Galaxy, to make predictions about other quantities measured in Seyferts and to model the photometric features of local bulges. The chemical evolution model contains updated and detailed calculations of the Galactic potential and of the feedback from the central supermassive black hole, and the spectro-photometric model covers a wide range of stellar ages and metallicities. We computed the evolution of bulges in the mass range 2x109-1011M by scaling the efficiency of star formation and the bulge scalelength, as in the inverse-wind scenario for elliptical galaxies, and by considering an Eddington limited accretion onto the central supermassive black hole. We successfully reproduced the observed relation between the masses of the black hole and of the host bulge. The observed nuclear bolometric luminosity emitted by the supermassive black hole is reproduced only at high redshift or for the most massive bulges; in the other cases, a rejuvenation mechanism is necessary at z≃0. The energy provided by the black hole is in most cases not significant for triggering the galactic wind. The observed high star-formation rates and metal overabundances are easily achieved, as are the constancy of chemical abundances with the redshift and present-day colours of bulges. Those results are not affected if we vary the index of the stellar IMF from x=0.95 to x=1.35. A steeper IMF is instead required in order to reproduce the colour-magnitude relation and the present K-band luminosity of the bulge. We show that the chemical evolution of the host bulge, with a short formation timescale of ∼0.1Gyr, a rather high efficiency of star formation ranging from 11 to 50Gyr–1 according to the bulge mass, and an IMF flatter than the solar neighbourhood, combined with the accretion onto the black hole, is sufficient to explain the main observed features of Seyfert galaxies.

Abstract Copyright:

Journal keyword(s): galaxies: Seyfert - galaxies: bulges - galaxies: photometry - ISM: abundances

Simbad objects: 4

goto Full paper

goto View the reference in ADS

Number of rows : 4

N Identifier Otype ICRS (J2000)
ICRS (J2000)
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2021
1 Mrk 1044 Sy1 02 30 05.5224714146 -08 59 53.208069457   14.74 14.29 13.981 13.585 ~ 225 0
2 NGC 4253 Sy1 12 18 26.5155239433 +29 48 46.518670434   14.34 13.57     ~ 950 1
3 ESO 383-35 Sy1 13 35 53.7686909139 -34 17 44.139127597   13.89 13.61 8.9   ~ 1400 0
4 NAME Galactic Bulge reg ~ ~           ~ 3532 0

    Equat.    Gal    SGal    Ecl

To bookmark this query, right click on this link: simbad:objects in 2008A&A...478..335B and select 'bookmark this link' or equivalent in the popup menu


© Université de Strasbourg/CNRS

    • Contact