2008A&A...481..199N


C.D.S. - SIMBAD4 rel 1.7 - 2021.03.02CET03:23:49

2008A&A...481..199N - Astronomy and Astrophysics, volume 481, 199-216 (2008/4-1)

Carbon abundances of early B-type stars in the solar vicinity. Non-LTE line-formation for C II/III/IV and self-consistent atmospheric parameters.

NIEVA M.F. and PRZYBILLA N.

Abstract (from CDS):

Precise determinations of the chemical composition in early B-type stars constitute fundamental observational constraints on stellar and galactochemical evolution. Carbon, in particular, is one of the most abundant metals in the Universe but analyses in early-type stars are known to show inconclusive results. Large discrepancies between analyses of different lines in CII, a failure to establish the CII/III ionization balance, and the derivation of systematically lower abundances than from other indicators like HII regions and young FG-type stars all pose long-standing problems. We discuss improvements to the non-LTE modelling of the visual line spectrum and to the spectral analysis of early B-type stars, as well as their consequences for stellar parameter and abundance derivations. The most relevant sources of systematic uncertainies and their effects on the analysis are investigated. Consequences for the present-day carbon abundance in the solar vicinity are discussed. We present a comprehensive and robust CII/III/IV model for non-LTE line-formation calculations based on carefully selected atomic data. The model is calibrated with high-S/N spectra of six apparently slow-rotating early B-type dwarfs and giants, which cover a wide parameter range and are randomly distributed in the solar neighbourhood. A self-consistent quantitative spectrum analysis is performed using an extensive iteration scheme to determine stellar atmospheric parameters and to select the appropriate atomic data used for deriving chemical abundances. We establish the carbon ionization balance for all sample stars based on a unique set of input atomic data. Consistency is achieved for all modelled carbon lines of the sample stars. Highly accurate atmospheric parameters and a homogeneous carbon abundance of log(C/H)+12=8.32±0.04 are derived with reduced systematic errors. Present evolution models for massive stars indicate that this value may require only a small adjustment because of the effects of rotational mixing, by <+0.05dex per sample star. This results in a present-day stellar carbon abundance in the solar neighbourhood, which is in good agreement with recent determinations of the solar value and with the gas-phase abundance of the Orion HII region. Our finding of a homogeneous present-day carbon abundance also conforms to predictions of chemical-evolution models for the Galaxy. Moreover, the present approach allows us to constrain the effects of systematic errors on fundamental parameters and abundances. This suggests that most of the difficulties found in previous work may be related to large systematic effects in the atmospheric parameter determination and/or inaccuracies in the atomic data.

Abstract Copyright:

Journal keyword(s): line: formation - stars: early type - stars: fundamental parameters - stars: abundances - Galaxy: abundances - solar neighbourhood

Simbad objects: 11

goto Full paper

goto View the reference in ADS

Number of rows : 11

N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2021
#notes
1 NAME Magellanic Clouds GrG 03 00 -71.0           ~ 5857 1
2 HD 36591 V* 05 32 41.3503640106 -01 35 30.577451332 4.240 5.150 5.340     B2II/III 230 1
3 M 42 HII 05 35 17.3 -05 23 28           ~ 3776 0
4 NAME Ori I As* 05 38 -02.8           ~ 566 0
5 V* PT Pup bC* 07 36 41.0358985359 -19 42 08.425242012 4.65 5.524 5.699     B2II 138 0
6 * P Pup ** 07 49 14.2953578 -46 22 23.542204 2.92 3.93 4.11 4.19 4.36 B0III 142 0
7 * alf Pyx V* 08 43 35.5375544 -33 11 10.989788 2.65 3.50 3.68 3.76 3.93 B1.5III 200 0
8 * chi Cen bC* 14 06 02.7682446 -41 10 46.678780 3.4 4.155 4.343     B2V 206 1
9 NAME ASSOC II SCO As* 16 15 -24.2           ~ 1160 1
10 * tau Sco * 16 35 52.9528530 -28 12 57.661515 1.55 2.56 2.81 2.93 3.18 B0.2V 865 0
11 NAME Local Group GrG ~ ~           ~ 7181 0

    Equat.    Gal    SGal    Ecl

To bookmark this query, right click on this link: simbad:objects in 2008A&A...481..199N and select 'bookmark this link' or equivalent in the popup menu


2021.03.02-03:23:49

© Université de Strasbourg/CNRS

    • Contact