C.D.S. - SIMBAD4 rel 1.7 - 2021.02.24CET22:58:13

2008A&A...487..637M - Astronomy and Astrophysics, volume 487, 637-644 (2008/8-4)

Analysis of the variability of the luminous emission line star MWC 314.


Abstract (from CDS):

We investigated the surroundings of MWC 314 in the framework of the study of hot emission line star environments using the SAC method. This star is either a B[e] supergiant or a luminous blue variable and appears to be extremely luminous and massive. We determine the structure and physical conditions of the emitting region and study the possible variations. We measured the absorption and emission line radial velocities and the emission line fluxes on high-resolution spectra obtained with Aurelie at the 1.52m OHP telescope in July 1998, with Elodie at the 1.93m OHP telescope at various epochs, and with echelle spectrographs of the Asiago and Loiano observatories (Italy) in 2006. We used the statistical approach of the self-absorption curve method (SAC) to derive physical parameters of the line-emitting region. We detected drastic variations of the photospheric absorption line radial velocities with time, while the emission line velocities appear to be stable. The CrII, TiII, and FeII emission lines have a complex structure. They are double-peaked, and each of these two 60km/s separated components, is composed of a narrow and a broad component, while the [FeII] line components are narrower. The fit of the various components of the FeII lines to a SAC curve indicates that their intensities are affected by some self absorption. We obtained a Boltzmann-type population law whose mean excitation temperature is 6500–1000+1500K for the narrow component lower and upper levels. We obtained a higher Boltzmann-type population law of 10500–2000+3000K for the forbidden transition upper levels. From the absorption lines we confirm the binarity for MWC 314. The periodicity has nevertheless to be improved with a higher sampling frequency. Our results from the emission lines are consistent with line formation in a rotating disk around a star. The typical minimum radius of the line emitting region obtained from the SAC study is 3.5x1013cm (2.0x1013cm<R<6.3x1013cm). We argue, in the framework of a very simplified geometrical model, that the [FeII] lines are emitted farther out than the permitted Cr II, Ti II, and FeII lines, in a disk inclined 25±5 degrees to the plane of sky. If the rotation of the disk is Keplerian, the FeII lines are emitted in a zone defined by 4x1012cm<R<7x1013cm, while for a rotation with conservation of angular momentum, they are emitted from 4x1012cm<R<2x1013cm.

Abstract Copyright:

Journal keyword(s): line: formation - methods: data analysis - stars: emission-line, Be - stars: early-type

Simbad objects: 5

goto Full paper

goto View the reference in ADS

Number of rows : 5

N Identifier Otype ICRS (J2000)
ICRS (J2000)
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2021
1 HD 34664 s*b 05 13 52.9943883589 -67 26 54.822130587 11.509 11.88 11.774 11.63 10.991 B0/0.5I[e] 94 0
2 HD 45677 Be* 06 28 17.4219761127 -13 03 11.130589443 7.86 8.52 8.50 8.11 8.01 B2IV/V[e] 307 0
3 V* XX Oph ** 17 43 56.4967929636 -06 16 08.787105588 10.51 9.81 8.59     M5IIe+Aep 141 0
4 BD+14 3887 Em* 19 21 33.9773483922 +14 52 56.908316938 11.86 11.3 9.89     B3Ibe 80 0
5 * P Cyg s*b 20 17 47.2020844 +38 01 58.552724 4.66 5.24 4.82 4.28 4.02 B1-2Ia-0ep 1140 1

    Equat.    Gal    SGal    Ecl

To bookmark this query, right click on this link: simbad:objects in 2008A&A...487..637M and select 'bookmark this link' or equivalent in the popup menu


© Université de Strasbourg/CNRS

    • Contact