Query : 2008A&A...490..435D

2008A&A...490..435D - Astronomy and Astrophysics, volume 490, 435-445 (2008/10-4)

Nulling interferometry: performance comparison between space and ground-based sites for exozodiacal disc detection.


Abstract (from CDS):

Characterising the circumstellar dust around nearby main sequence stars is a necessary step in understanding the planetary formation process and is crucial for future life-finding space missions such as ESA's Darwin or NASA's terrestrial planet finder (TPF). Besides paving the technological way to Darwin/TPF, the space-based infrared interferometers Pegase and FKSI (Fourier-Kelvin Stellar Interferometer) will be valuable scientific precursors. We investigate the performance of Pegase and FKSI for exozodiacal disc detection and compare the results with ground-based nulling interferometers. We used the GENIEsim software (Absil et al. 2006A&A...448..787A) which was designed and validated to study the performance of ground-based nulling interferometers. The software has been adapted to simulate the performance of space-based nulling interferometers by disabling all atmospheric effects and by thoroughly implementing the perturbations induced by payload vibrations in the ambient space environment. Despite using relatively small telescopes (≤0.5m), Pegase and FKSI are very efficient for exozodiacal disc detection. They are capable of detecting exozodiacal discs 5 and 1 time respectively, as dense as the solar zodiacal cloud, and they outperform any ground-based instrument. Unlike Pegase, FKSI can achieve this sensitivity for most targets of the Darwin/TPF catalogue thanks to an appropriate combination of baseline length and observing wavelength. The sensitivity of Pegase could, however, be significantly boosted by considering a shorter interferometric baseline length. Besides their main scientific goal (characterising hot giant extrasolar planets), the space-based nulling interferometers Pegase and FKSI will be very efficient in assessing within a few minutes the level of circumstellar dust in the habitable zone around nearby main sequence stars down to the density of the solar zodiacal cloud. These space-based interferometers would be complementary to Antarctica-based instruments in terms of sky coverage and would be ideal instruments for preparing future life-finding space missions.

Abstract Copyright:

Journal keyword(s): instrumentation: high angular resolution - techniques: interferometric - circumstellar matter

Simbad objects: 2

goto Full paper

goto View the references in ADS

Number of rows : 2
N Identifier Otype ICRS (J2000)
ICRS (J2000)
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2023
1 * tau Cet PM* 01 44 04.0831371922 -15 56 14.927607677 4.43 4.22 3.50 2.88 2.41 G8V 1216 1
2 * alf Lyr dS* 18 36 56.33635 +38 47 01.2802 0.03 0.03 0.03 0.07 0.10 A0Va 2640 0

To bookmark this query, right click on this link: simbad:objects in 2008A&A...490..435D and select 'bookmark this link' or equivalent in the popup menu


© Université de Strasbourg/CNRS

    • Contact