C.D.S. - SIMBAD4 rel 1.7 - 2021.03.05CET12:34:13

2008A&A...490..695G - Astronomy and Astrophysics, volume 490, 695-706 (2008/11-1)

SiO line emission from interstellar jets and outflows: silicon-containing mantles and non-stationary shock waves.


Abstract (from CDS):

We study the production and emission of SiO and H2 in the gas phase of molecular outflows, extending previous work in which we considered steady-state C-type shock waves and assumed the silicon to be present only in the cores of silicate grains. We place constraints on the physical parameters of the pre-shock region, using recent observations of SiO and observations of molecular hydrogen. We show the effects of introducing SiO-containing mantles and of varying the age of the shock wave. We consider simultaneously the emission of SiO and H2 from the young L1157 outflow. The molecular outflows are studied by means of a code that can generate stationary C- and J-type shock models and approximate non-stationary solutions, which combine these two types of shock wave. The emission of molecular hydrogen is computed by this code, whereas the SiO emission is computed by means of a separate LVG model, which uses the calculated physical and chemical profiles. A grid of models has been computed, with shock speeds in the range 10≤vs≤35km/s and pre-shock gas densities 104≤nH≤ 106cm–3. A wide range of magnetic field strengths has been investigated, from 45µG to about 600µG. We illustrate our results by means of observational data obtained on the blue lobe of the L1157 outflow. Given the combinations of pre-shock densities and shock velocities necessary to fit the H2 observations, we find that the erosion only of the silicate material in the grains cores cannot account for the observed SiO line intensities. We investigate the possiblity that a fraction of the SiO is present initially in the grain mantles, and we succeed in constraining this fraction. Introducing even a few percent of the silicon (as SiO) into the mantles is sufficient to increase the SiO line widths and fluxes by an order of magnitude. With this assumption, it is possible to find a non-stationary shock model that provides a reasonable fit of the observations of both H2 and SiO. With a few percent of the silicon present initially in the grain mantles, good agreement is obtained with recent observations of SiO line integrated line intensities for a pre-shock density nH=104cm–3 and a shock speed vs=20km/s. The magnetic field strength and the shock age are not well constrained by the observations of either H2 or SiO. We show that CO observations (in particular, with the Herschel satellite) could provide further discrimination between the models.

Abstract Copyright:

Journal keyword(s): astrochemistry - magnetohydrodynamics (MHD) - molecular processes - ISM: jets and outflows - infrared: ISM - radio lines: ISM

Simbad objects: 7

goto Full paper

goto View the reference in ADS

Number of rows : 7

N Identifier Otype ICRS (J2000)
ICRS (J2000)
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2021
1 LDN 1448 DNe 03 22.5 +30 35           ~ 476 0
2 NAME OMC-1 MoC 05 35 14 -05 22.4           ~ 1041 2
3 LDN 1157 DNe 20 39 06.4 +68 02 13           ~ 501 0
4 [DE95] LDN 1157 A2 PoC 20 39 09 +68 01.3           ~ 3 0
5 JCMTSF J203910.0+680123 PoC 20 39 09.9 +68 01 15           ~ 5 0
6 [DE95] LDN 1157 B1 out 20 39 11 +68 01.3           ~ 192 0
7 HH 168 HH 22 56 18.0 +62 01 47           ~ 89 0

    Equat.    Gal    SGal    Ecl

To bookmark this query, right click on this link: simbad:objects in 2008A&A...490..695G and select 'bookmark this link' or equivalent in the popup menu


© Université de Strasbourg/CNRS

    • Contact