C.D.S. - SIMBAD4 rel 1.7 - 2021.03.04CET23:14:06

2009A&A...494...21A - Astronomy and Astrophysics, volume 494, 21-32 (2009/1-4)

Evolution of magnetic fields in galaxies and future observational tests with the square kilometre array.


Abstract (from CDS):

In the context of models of galaxy formation and evolution, we investigate the cosmological evolution of large- and small-scale magnetic fields inside galaxies. We use the dynamo theory to derive the timescales of amplification and ordering of magnetic fields in disk and puffy galaxies. Turbulence in protogalactic halos generated by thermal virialization can drive an efficient turbulent dynamo.
Result. from simulations of hierarchical structure formation cosmology provide a tool to develop an evolutionary model of regular magnetic fields coupled with galaxy formation and evolution. The turbulent (small-scale) dynamo was able to amplify a weak seed magnetic field in halos of protogalaxies to a few µG strength within a few 108yr. This turbulent field served as a seed to the mean-field (large-scale) dynamo. Galaxies similar to the Milky Way formed their disks at z≃10 and regular fields of µG strength and a few kpc coherence length were generated within 2Gyr (at z≃3), but field-ordering on the coherence scale of the galaxy size required an additional 6Gyr (at z≃0.5). Giant galaxies formed their disks at z≃10, allowing more efficient dynamo generation of strong regular fields (with kpc coherence length) already at z≃4. However, the age of the Universe is short for fully coherent fields in giant galaxies larger than 15kpc to have been achieved. Dwarf galaxies should have hosted fully coherent fields at z≃1. After a major merger, the strength of the turbulent field is enhanced by a factor of a few. This evolutionary scenario can be tested by measurements of polarized synchrotron emission and Faraday rotation with the planned Square Kilometre Array (SKA). We predict an anticorrelation between galaxy size and ratio between ordering scale and galaxy size. Weak regular fields (small Faraday rotation) in galaxies at z≲3 are signatures of major mergers. Undisturbed dwarf galaxies should host fully coherent fields, giving rise to strong Faraday rotation signals. Radio observations may serve as a clock for measuring the time since the last major merger.

Abstract Copyright:

Journal keyword(s): galaxies: formation - galaxies: evolution - galaxies: magnetic fields - galaxies: high-redshift - galaxies: interactions - radio continuum: galaxies

Simbad objects: 5

goto Full paper

goto View the reference in ADS

Number of rows : 5

N Identifier Otype ICRS (J2000)
ICRS (J2000)
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2021
1 M 31 G 00 42 44.330 +41 16 07.50 4.86 4.36 3.44     ~ 11212 1
2 NAME LMC G 05 23 34.6 -69 45 22     0.4     ~ 15211 1
3 M 81 Sy2 09 55 33.17306143 +69 03 55.0609270   7.89 6.94     ~ 4043 5
4 M 82 IG 09 55 52.430 +69 40 46.93 9.61 9.30 8.41     ~ 5429 6
5 NAME Vir I ClG 12 26 32.1 +12 43 24   10.00 8.49     ~ 5986 0

    Equat.    Gal    SGal    Ecl

To bookmark this query, right click on this link: simbad:objects in 2009A&A...494...21A and select 'bookmark this link' or equivalent in the popup menu


© Université de Strasbourg/CNRS

    • Contact