C.D.S. - SIMBAD4 rel 1.7 - 2021.03.05CET21:48:10

2009A&A...496...57M - Astronomy and Astrophysics, volume 496, 57-75 (2009/3-2)

The 0.4 < z < 1.3 star formation history of the universe as viewed in the far-infrared.


Abstract (from CDS):

We use the deepest existing mid- and far-infrared observations (reaching ∼3mJy at 70µm) obtained with Spitzer in the Great Observatories Origins Deep Survey (GOODS) and Far Infrared Deep Extragalactic Legacy survey (FIDEL) fields to derive the evolution of the rest-frame 15µm, 35µm, and total infrared luminosity functions of galaxies spanning z<1.3. We thereby quantify the fractional contribution of infrared luminous galaxies to the comoving star formation rate density over this redshift range. In comparison with previous studies, the present one takes advantage of deep 70µm observations that provide a more robust infrared luminosity indicator than 24µm affected by the emission of PAHs at high redshift (z∼1), and we use several independent fields to control cosmic variance. We used a new extraction technique based on the well-determined positions of galaxies at shorter wavelengths to extract the 24 and 70µm flux densities of galaxies. It is found that sources separated by a minimum of 0.5xFWHM are deblended by this technique, which facilitates multi-wavelength associations of counterparts. Using a combination of photometric and spectroscopic redshifts that exist for ∼80% of the sources in our sample, we are able to estimate the rest-frame luminosities of galaxies at 15µm and 35 µm. By complementing direct detections with a careful stacking analysis, we measured the mid- and far-infrared luminosity functions of galaxies over a factor ∼100 in luminosity (1011L≲LIR≲1013L) at z<1.3. A stacking analysis was performed to validate the bolometric corrections and to compute comoving star-formation rate densities in three redshift bins 0.4<z<0.7, 0.7<z<1.0 and, 1.0<z<1.3. We find that the average infrared spectral energy distribution of galaxies over the last 2/3 of the cosmic time is consistent with that of local galaxies, although individual sources do present significant scatter. We also measured both the bright and faint ends of the infrared luminosity functions and find no evidence for a change in the slope of the double power law used to characterize the luminosity function. The redshift evolution of infrared luminous galaxies is consistent with pure luminosity evolution proportional to (1+z)3.6±0.4 up to z∼1.3. We do not find evidence of differential evolution between LIRGs and ULIRGs up to z∼1.3, in contrast with previous claims. The comoving number density of infrared luminous galaxies has increased by a factor of ∼100 between 0<z<1. By z∼1.0, LIRGs produce half of the total comoving infrared luminosity density.

Abstract Copyright:

Journal keyword(s): galaxies: evolution - infrared: galaxies - galaxies: starburst - cosmology: observations

Simbad objects: 6

goto Full paper

goto View the reference in ADS

Number of rows : 6

N Identifier Otype ICRS (J2000)
ICRS (J2000)
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2021
1 NAME GOODS Southern Field reg 03 32 28.0 -27 48 30           ~ 1109 1
2 NAME Chandra Deep Field-South reg 03 32 28.0 -27 48 30           ~ 1859 1
3 NAME Extended Chandra Deep Field South reg 03 32 30.0 -27 48 20           ~ 646 0
4 NAME Chandra Deep Field-North reg 12 36.8 +62 13           ~ 621 0
5 NAME GOODS-N Field reg 12 36 55.0 +62 14 15           ~ 953 1
6 NAME Extended Groth Strip reg 14 19 +52.8           ~ 608 0

    Equat.    Gal    SGal    Ecl

To bookmark this query, right click on this link: simbad:objects in 2009A&A...496...57M and select 'bookmark this link' or equivalent in the popup menu


© Université de Strasbourg/CNRS

    • Contact