2009A&A...506..399L


C.D.S. - SIMBAD4 rel 1.7 - 2020.07.05CEST07:13:57

2009A&A...506..399L - Astronomy and Astrophysics, volume 506, 399-410 (2009/10-4)

Determining the mass loss limit for close-in exoplanets: what can we learn from transit observations?

LAMMER H., ODERT P., LEITZINGER M., KHODACHENKO M.L., PANCHENKO M., KULIKOV Yu.N., ZHANG T.L., LICHTENEGGER H.I.M., ERKAEV N.V., WUCHTERL G., MICELA G., PENZ T., BIERNAT H.K., WEINGRILL J., STELLER M., OTTACHER H., HASIBA J. and HANSLMEIER A.

Abstract (from CDS):

We study the possible atmospheric mass loss from 57 known transiting exoplanets around F, G, K, and M-type stars over evolutionary timescales. For stellar wind induced mass loss studies, we estimate the position of the pressure balance boundary between Coronal Mass Ejection (CME) and stellar wind ram pressures and the planetary ionosphere pressure for non- or weakly magnetized gas giants at close orbits. The thermal mass loss of atomic hydrogen is calculated by a mass loss equation where we consider a realistic heating efficiency, a radius-scaling law and a mass loss enhancement factor due to stellar tidal forces. The model takes into account the temporal evolution of the stellar EUV flux by applying power laws for F, G, K, and M-type stars. The planetary ionopause obstacle, which is an important factor for ion pick-up escape from non- or weakly magnetized gas giants is estimated by applying empirical power-laws. By assuming a realistic heating efficiency of about 10-25% we found that WASP-12b may have lost about 6-12% of its mass during its lifetime. A few transiting low density gas giants at similar orbital location, like WASP-13b, WASP-15b, CoRoT-1b or CoRoT-5b may have lost up to 1-4% of their initial mass. All other transiting exoplanets in our sample experience negligible thermal loss (≤1%) during their lifetime. We found that the ionospheric pressure can balance the impinging dense stellar wind and average CME plasma flows at distances which are above the visual radius of ``Hot Jupiters'', resulting in mass losses <2% over evolutionary timescales. The ram pressure of fast CMEs cannot be balanced by the ionospheric plasma pressure for orbital distances between 0.02-0.1AU. Therefore, collisions of fast CMEs with hot gas giants should result in large atmospheric losses which may influence the mass evolution of gas giants with masses <MJup. Depending on the stellar luminosity spectral type, planetary density, heating efficiency, orbital distance, and the related Roche lobe effect, we expect that at distances between 0.015-0.02AU, Jupiter-class and sub-Jupiter-class exoplanets can lose several percent of their initial mass. At orbital distances ≤0.015AU, low density hot gas giants in orbits around solar type stars may even evaporate down to their coresize, while low density Neptune-class objects can lose their hydrogen envelopes at orbital distances ≤0.02AU.

Abstract Copyright:

Journal keyword(s): planetary systems - planetary systems: formation

Simbad objects: 62

goto Full paper

goto View the reference in ADS

Number of rows : 62

N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2020
#notes
1 WASP-1b Pl 00 20 40.0746033057 +31 59 23.953709844           ~ 118 1
2 HD 17156b Pl 02 49 44.4866941172 +71 45 11.632197644           ~ 158 1
3 WASP-11b Pl 03 09 28.5427034552 +30 40 24.868785834           ~ 56 1
4 Cl Melotte 22 OpC 03 47 00 +24 07.0           ~ 2978 0
5 BD+57 793b Pl 04 21 52.7044170433 +57 49 01.892074012           ~ 172 1
6 Cl Melotte 25 OpC 04 26 54.00 +15 52 00.0           ~ 2654 0
7 WASP-12b Pl 06 30 32.7966788910 +29 40 20.266334158           G0 534 1
8 CoRoT-7b Pl 06 43 49.4690410679 -01 03 46.825797768           ~ 346 1
9 CoRoT-5b Pl 06 45 06.5406880497 +00 48 54.906888317           ~ 39 1
10 CoRoT-5 EB* 06 45 06.5406880497 +00 48 54.906888317   14.67 14.018 13.82 13.29 F9V 35 1
11 CoRoT-1 * 06 48 19.1724141241 -03 06 07.710423478     13.6 13.44 12.88 G0V 106 2
12 CoRoT-1b Pl 06 48 19.1724141241 -03 06 07.710423478           ~ 150 1
13 CoRoT-4 * 06 48 46.7133639143 -00 40 21.969520601       13.42   F0V 57 1
14 HAT-P-9b Pl 07 20 40.4562402899 +37 08 26.342807726           ~ 52 1
15 XO-4b Pl 07 21 33.1602110129 +58 16 05.111704885           ~ 50 1
16 XO-5b Pl 07 46 51.9615004947 +39 05 40.460564688           ~ 41 1
17 BD+50 1471b Pl 07 48 06.4726006390 +50 13 32.921121328           ~ 129 1
18 BD+34 1976b Pl 09 20 24.7143829845 +33 52 56.699778302           ~ 49 1
19 HD 80606b Pl 09 22 37.5769478105 +50 36 13.434928660           ~ 273 1
20 NAME OGLE-TR 211b Pl 10 40 14.3825488221 -62 27 20.019051097           ~ 26 1
21 NAME OGLE-TR-132b Pl 10 50 34.5945727713 -61 57 26.140283621           ~ 99 1
22 OGLE-TR 113 SB* 10 52 24.2808297652 -61 26 48.845891762     16.08 15.41 14.42 K 112 1
23 OGLE-TR 111 V* 10 53 17.8066842748 -61 24 20.606379347     16.96 16.05 15.55 G 90 1
24 NAME OGLE2-TR L9b Pl 11 07 55.1807238868 -61 08 46.537193777           ~ 23 1
25 NAME OGLE-TR 182b Pl 11 09 18.7248184151 -61 05 42.963716098           ~ 33 1
26 Ross 905b Pl 11 42 11.0933874353 +26 42 23.658083337           ~ 591 1
27 HAT-P-3b Pl 13 44 22.5939154049 +48 01 43.206257583           ~ 67 1
28 CD-31 10766b Pl 13 55 42.7119654298 -32 09 34.615276547           ~ 55 1
29 HAT-P-12b Pl 13 57 33.4668502171 +43 29 36.602501754           ~ 121 1
30 BD+22 2716b Pl 14 33 06.3573673505 +21 53 40.982782397           ~ 121 1
31 BD+36 2593b Pl 15 19 57.9205371377 +36 13 46.737977732           ~ 63 1
32 Lupus-TR 3b Pl 15 30 18.66528 -42 58 41.5308           ~ 19 1
33 BD+28 2507b Pl 16 02 11.8463105423 +28 10 10.419642379           ~ 158 1
34 HD 147506b Pl 16 20 36.3579144486 +41 02 53.109043943           ~ 212 1
35 HD 149026b Pl 16 30 29.6184841164 +38 20 50.310893575           ~ 296 1
36 NAME OGLE-TR-10b Pl 17 51 28.2589927588 -29 52 35.232998832           ~ 82 1
37 TrES-3 Pl 17 52 07.0185036683 +37 32 46.237002085           ~ 192 2
38 TrES-4 Pl 17 53 13.0490781575 +37 12 42.586106196           ~ 180 2
39 NAME OGLE-TR-56b Pl 17 56 35.5015759807 -29 32 21.476706712           ~ 191 1
40 SWEEPS 4 Pl 17 58 53.92 -29 11 20.6     18.80   17.70 ~ 26 1
41 SWEEPS 11 Pl 17 59 02.67 -29 11 53.5           ~ 28 1
42 HAT-P-5b Pl 18 17 37.3127577964 +36 37 17.168584830           ~ 52 1
43 BD+35 3293b Pl 18 34 31.6255913635 +35 39 41.489193276           ~ 98 1
44 NAME V672 Lyr b Pl 19 04 09.8516024106 +36 37 57.445911611           ~ 310 1
45 Kepler-1b Pl 19 07 14.0379171930 +49 18 59.090895318           ~ 280 2
46 CoRoT-2 * 19 27 06.4944821296 +01 23 01.357597206   13.422 12.568 12.204 11.49 G7V+K9V 211 2
47 CoRoT-3 EB* 19 28 13.2642482783 +00 07 18.614302248   14.199 13.292 13.099 12.54 F3V 66 1
48 BD+47 2846b Pl 19 28 59.3538131541 +47 58 10.216250846           ~ 268 1
49 BD+47 2936b Pl 19 50 50.2474562793 +48 04 51.097364378           ~ 284 1
50 HD 189733b Pl 20 00 43.7130382888 +22 42 39.071811263           ~ 1082 1
51 WASP-2b Pl 20 30 54.1279218812 +06 25 46.338261893           ~ 88 1
52 HD 197286b Pl 20 44 10.2207500229 -39 13 30.859306335           ~ 50 1
53 HD 209458b Pl 22 03 10.7729598762 +18 53 03.548248479           ~ 1468 1
54 BD+34 4779b Pl 22 52 09.8635559135 +35 26 49.606963112           ~ 63 1
55 NAME BD+37 4734Bb Pl 22 57 46.8443014981 +38 40 30.355384717           ~ 196 1
56 WASP-6b Pl 23 12 37.7368657624 -22 40 26.277489164           ~ 95 1
57 WASP-10b Pl 23 15 58.3005497925 +31 27 46.294728182           ~ 89 1
58 WASP-4b Pl 23 34 15.0858223039 -42 03 41.049468209           ~ 117 1
59 BD+41 4831b Pl 23 39 05.8101319829 +42 27 57.503480354           ~ 67 1
60 WASP-5b Pl 23 57 23.7565609528 -41 16 37.745589460           ~ 73 1
61 CD-35 16019b Pl 23 59 36.0711854449 -35 01 52.923483315           ~ 95 0
62 WASP-9 * ~ ~           G0 7 2

    Equat.    Gal    SGal    Ecl

To bookmark this query, right click on this link: simbad:objects in 2009A&A...506..399L and select 'bookmark this link' or equivalent in the popup menu


2020.07.05-07:13:57

© Université de Strasbourg/CNRS

    • Contact