2010A&A...509A..87P


Query : 2010A&A...509A..87P

2010A&A...509A..87P - Astronomy and Astrophysics, volume 509, A87-87 (2010/1-1)

Radiolysis of ammonia-containing ices by energetic, heavy, and highly charged ions inside dense astrophysical environments.

PILLING S., SEPERUELO DUARTE E., DA SILVEIRA E.F., BALANZAT E., ROTHARD H., DOMARACKA A. and BODUCH P.

Abstract (from CDS):

Deep inside dense molecular clouds and protostellar disks, interstellar ices are protected from stellar energetic UV photons. However, X-rays and energetic cosmic rays can penetrate inside these regions triggering chemical reactions, molecular dissociation, and evaporation processes. We present experimental studies of the interaction of heavy, highly charged, and energetic ions (46MeV 58Ni13+) with ammonia-containing ices H2O:NH3 (1:0.5) and H2O:NH3:CO (1:0.6:0.4) in an attempt to simulate the physical chemistry induced by heavy-ion cosmic rays inside dense astrophysical environments. The measurements were performed inside a high vacuum chamber coupled to the IRRSUD (IR radiation SUD) beamline at the heavy-ion accelerator GANIL (Grand Accelerateur National d'Ions Lourds) in Caen, France. The gas samples were deposited onto a polished CsI substrate previously cooled to 13K. In-situ analysis was performed by a Fourier transform infrared spectrometer (FTIR) at different fluences. The average values of the dissociation cross-section of water, ammonia, and carbon monoxide due to heavy-ion cosmic ray analogs are ∼2x10–13, 1.4x10–13, and 1.9x10–13cm2, respectively. In the presence of a typical heavy cosmic ray field, the estimated half life of the studied species is 2-3x106-years. The ice compaction (micropore collapse) produced by heavy cosmic rays seems to be at least 3 orders of magnitude higher than that produced by (0.8MeV) protons. The infrared spectra of the irradiated ice samples exhibit lines of several new species including HNCO, N2O, OCN, and NH4+. In the case of the irradiated H2O:NH3:CO ice, the infrared spectrum at room temperature contains five bands that are tentatively assigned to vibration modes of the zwitterionic glycine (NH3+CH2COO).

Abstract Copyright:

Journal keyword(s): astrochemistry - methods: laboratory - ISM: molecules - molecular data - molecular processes - cosmic rays

Simbad objects: 3

goto Full paper

goto View the references in ADS

Number of rows : 3
N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2023
#notes
1 GCS 3 IR 17 46 15 -28 49.6           ~ 56 0
2 W 33a Y*O 18 14 39.0 -17 52 03           ~ 618 0
3 IRAS 23118+6110 Y*O 23 14 01.63 +61 27 20.2           ~ 366 0

To bookmark this query, right click on this link: simbad:objects in 2010A&A...509A..87P and select 'bookmark this link' or equivalent in the popup menu


2022.12.08-08:35:39

© Université de Strasbourg/CNRS

    • Contact