Query : 2010A&A...509A..98S

2010A&A...509A..98S - Astronomy and Astrophysics, volume 509, A98-98 (2010/1-1)

Modelling line emission of deuterated H3+ from prestellar cores.


Abstract (from CDS):

The depletion of heavy elements in cold cores of interstellar molecular clouds can lead to a situation where deuterated forms of H3+ are the most useful spectroscopic probes of the physical conditions. The aim is to predict the observability of the rotational lines of H2D+ and D2H+ from prestellar cores.Recently derived rate coefficients for the H3+ +H2 isotopic system were applied to the ``complete depletion'' reaction scheme to calculate abundance profiles in hydrostatic core models. The ground-state lines of H2D+(o) (372 GHz) and D2H+(p) (692 GHz) arising from these cores were simulated. The excitation of the rotational levels of these molecules was approximated by using the state-to-state coefficients for collisions with H2. We also predicted line profiles from cores with a power-law density distribution advocated in some previous studies.The new rate coefficients introduce some changes to the complete depletion model, but do not alter the general tendencies. One of the modifications with respect to the previous results is the increase of the D3+ abundance at the cost of other isotopologues. Furthermore, the present model predicts a lower H2D+ (o/p) ratio, and a slightly higher D2H+ (p/o) ratio in very cold, dense cores, as compared with previous modelling results. These nuclear spin ratios affect the detectability of the submm lines of H2D+(o) and D2H+(p). The previously detected H2D+ and D2H+ lines towards the core I16293E, and the H2D+ line observed towards Oph D can be reproduced using the present excitation model and the physical models suggested in the original papers.

Abstract Copyright:

Journal keyword(s): ISM: clouds - radio lines: ISM - astrochemistry - radiative transfer - ISM: abundances - ISM: molecules

Simbad objects: 4

goto Full paper

goto View the references in ADS

Number of rows : 4
N Identifier Otype ICRS (J2000)
ICRS (J2000)
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2023
1 LDN 183 MoC 15 54 12.2 -02 49 42           ~ 731 1
2 NAME Ophiuchus Molecular Cloud SFR 16 28 06 -24 32.5           ~ 3478 1
3 NAME Ophiuchus D MoC 16 28 29.2 -24 18 25           ~ 113 0
4 NAME IRAS 16293E cor 16 32 29.060 -24 29 10.27           ~ 56 1

To bookmark this query, right click on this link: simbad:objects in 2010A&A...509A..98S and select 'bookmark this link' or equivalent in the popup menu


© Université de Strasbourg/CNRS

    • Contact