C.D.S. - SIMBAD4 rel 1.7 - 2020.07.16CEST16:23:10

2010A&A...517A..77T - Astronomy and Astrophysics, volume 517, A77-77 (2010/7-1)

Relating dust, gas, and the rate of star formation in M 31.


Abstract (from CDS):

We investigate the relationships between dust and gas, and study the star formation law in M 31. We have derived distributions of dust temperature and dust opacity across M31 at 45" resolution using the Spitzer data. With the opacity map and a standard dust model we de-reddened the Hα emission yielding the first Hα map of M 31 corrected for extinction. We compared the emissions from dust, Hα, HI, and H2 by means of radial distributions, pixel-to-pixel correlations, and wavelet cross-correlations. We calculated the star formation rate and star formation efficiency from the de-reddened Hα emission. The dust temperature steeply decreases from 30K near the center to 15K at large radii. The mean dust optical depth at the Hα wavelength along the line of sight is about 0.7. The radial decrease in the dust-to-gas ratio is similar to that of the oxygen abundance. Extinction is nearly linearly correlated with the total gas surface density within limited radial intervals. On scales <2 kpc, cold dust emission is best correlated with that of neutral gas, and warm dust emission with that of ionized gas. The Hα emission is slightly better correlated with emission at 70 µm than at 24 µm. The star formation rate in M31 is low. In the area 6 kpc<R<17 kpc, the total SFR is ≃0.3M/yr. A linear relationship exists between surface densities of SFR and H2. The Kennicutt-Schmidt law between SFR and total gas has a power-law index of 1.30±0.05 in the radial range of R=7-11 kpc increasing by about 0.3 for R = 11-13 kpc. The better 70 µm-Hα than 24 µm-Hα correlation plus an excess in the 24 µm/70 µm intensity ratio indicates that other sources than dust grains, e.g. those of stellar origin, contribute to the 24 µm emission. The lack of H2 in the central region could be related to the lack of HI and the low opacity/high temperature of the dust. Since neither SFR nor SFE is well correlated with the surface density of H2 or total gas, other factors than gas density must play an important role in the formation of massive stars in M 31. The molecular depletion time scale of 1.1 Gyr indicates that M 31 is about three times less efficient in forming young massive stars than M 33.

Abstract Copyright:

Journal keyword(s): galaxies: individual: M 31 - galaxies: ISM - dust, extinction - ISM: general - stars: formation

Simbad objects: 4

goto Full paper

goto View the reference in ADS

Number of rows : 4

N Identifier Otype ICRS (J2000)
ICRS (J2000)
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2020
1 M 31 G 00 42 44.330 +41 16 07.50 4.86 4.36 3.44     ~ 10916 1
2 M 33 GiG 01 33 50.904 +30 39 35.79 6.17 6.27 5.72     ~ 5136 1
3 M 81 Sy2 09 55 33.17306143 +69 03 55.0609270   7.89 6.94     ~ 3966 5
4 M 51 GiP 13 29 52.698 +47 11 42.93   9.26 8.36 8.40   ~ 3783 4

    Equat.    Gal    SGal    Ecl

To bookmark this query, right click on this link: simbad:objects in 2010A&A...517A..77T and select 'bookmark this link' or equivalent in the popup menu


© Université de Strasbourg/CNRS

    • Contact