2010A&A...517A..87S


C.D.S. - SIMBAD4 rel 1.7 - 2020.07.11CEST10:34:04

2010A&A...517A..87S - Astronomy and Astrophysics, volume 517, A87-87 (2010/7-1)

Spatially resolved detection of crystallized water ice in a T Tauri object.

SCHEGERER A.A. and WOLF S.

Abstract (from CDS):

We search for frozen water and its processing around young stellar objects (YSOs of class I/II). We try to detect potential, regional differences in water ice evolution within YSOs, which is relevant to understanding the chemical structure of the progenitors of protoplanetary systems and the evolution of solid materials. Water plays an important role as a reaction bed for rich chemistry and is an indispensable requirement for life as known on Earth. We present our analysis of NAOS-CONICA/VLT spectroscopy of water ice at 3µm for the TTauri star YLW16A in the ρ Ophiuchi molecular cloud. We obtained spectra for different regions of the circumstellar environment. The observed absorption profiles are deconvolved with the mass extinction profiles of amorphous and crystallized ice measured in laboratory. We take into account both absorption and scattering by ice grains. Water ice in YLW16A is detected with optical depths of between τ=1.8 and τ=2.5. The profiles that are measured can be fitted predominantly by the extinction profiles of small grains (0.1µm-0.3µm) with a small contribution from large grains (<10%). However, an unambiguous trace of grain growth cannot be found. We detected crystallized water ice spectra that have their origin in different regions of the circumstellar environment of the TTauri star YLW16A. The crystallinity increases in the upper layers of the circumstellar disk, while only amorphous grains exist in the bipolar envelope. As in studies of silicate grains in TTauri objects, the higher crystallinity in the upper layers of the outer disk regions implies that water ice crystallizes and remains crystallized close to the disk atmosphere where water ice is shielded against hard irradiation.

Abstract Copyright:

Journal keyword(s): infrared: stars - accretion, accretion disks - astrobiology

Simbad objects: 11

goto Full paper

goto View the reference in ADS

Number of rows : 11

N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2020
#notes
1 RAFGL 989 Y*O 06 41 10.1592954288 +09 29 33.635497596   17.4 16.8 18.26 17.28 B2 241 0
2 * d Sco PM* 16 18 17.9001656 -28 36 50.476788   4.804 4.782     A1Va 147 0
3 GSS 30 Y*O 16 26 21.38160 -24 23 04.0524           ~ 200 1
4 GSS 32 TT* 16 26 24.0521249616 -24 24 48.105099750       17.81 15.58 K5-K6 94 1
5 YLW 12A Y*O 16 27 17.57160 -24 28 56.2944           ~ 64 0
6 CRBR 2422.8-3423 Y*O 16 27 24.61320 -24 41 03.4080           ~ 81 1
7 YLW 16A Y*O 16 27 28.02744 -24 39 33.5052           K8 185 0
8 NAME Ophiuchus Molecular Cloud SFR 16 28 06 -24 32.5           ~ 3027 0
9 V* VV CrA Or* 19 03 06.7419790029 -37 12 49.683383133   16.45 14.67 14.12 11.62 K7 107 0
10 HD 181321 PM* 19 21 29.7277723051 -34 59 00.356331012 7.22 7.11 6.48     G2V 124 0
11 NAME Vela Field reg ~ ~           ~ 149 0

    Equat.    Gal    SGal    Ecl

To bookmark this query, right click on this link: simbad:objects in 2010A&A...517A..87S and select 'bookmark this link' or equivalent in the popup menu


2020.07.11-10:34:04

© Université de Strasbourg/CNRS

    • Contact