2010A&A...519A..10C


Query : 2010A&A...519A..10C

2010A&A...519A..10C - Astronomy and Astrophysics, volume 519, A10-10 (2010/9-1)

Dynamical stability analysis of the HD 202206 system and constraints to the planetary orbits.

COUETDIC J., LASKAR J., CORREIA A.C.M., MAYOR M. and UDRY S.

Abstract (from CDS):

Long-term, precise Doppler measurements with the CORALIE spectrograph have revealed the presence of two massive companions to the solar-type star HD202206. Although the three-body fit of the system is unstable, it was shown that a 5:1 mean motion resonance exists close to the best fit, where the system is stable. It was also hinted that stable solutions with a wide range of mutual inclinations and low O-C were possible. We present here an extensive dynamical study of the HD202206 system, aiming at constraining the inclinations of the two known companions, from which we derive possible value ranges for the companion masses. We consider each inclination and one of the longitudes of ascending node as free parameters. For any chosen triplet of these parameters, we compute a new fit. Then we study the long-term stability in a small (in terms of O-C) neighborhood using Laskar's frequency map analysis. We also introduce a numerical method based on frequency analysis to determine the center of libration mode inside a mean motion resonance. We find that acceptable coplanar configurations (with low χ2 stable orbits) are limited with respect to inclinations to the line of sight between 30° and 90°. This limits the masses of both companions to roughly twice the minimum: mb∈[16.6MJup;33.5MJup] and mc∈[2.2MJup;4.4MJup]. Non-coplanar configurations are possible for a wide range of mutual inclinations from 0° to 90°, although ΔΩ=0[π] configurations seem to be favored. We also confirm the 5:1 mean motion resonance to be most likely. In the coplanar edge-on case, we provide a very good stable solution in the resonance, whose χ2 does not differ significantly from the best fit. Using our method for the determination of the center of libration, we further refine this solution to obtain an orbit with a very low amplitude of libration, as we expect that dissipative effects have dampened the libration.

Abstract Copyright:

Journal keyword(s): stars: individual: HD202206 - planetary systems - methods: numerical - techniques: radial velocities - celestial mechanics

VizieR on-line data: <Available at CDS (J/A+A/519/A10): hd202206.dat>

Simbad objects: 7

goto Full paper

goto View the references in ADS

Number of rows : 7
N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2022
#notes
1 HD 45364 PM* 06 25 38.4743561928 -31 28 51.430718388   8.82 8.06     G8V 114 1
2 HD 82943 PM* 09 34 50.7353072232 -12 07 46.369202196   7.17 6.53     F9VFe+0.5 439 2
3 CD-27 10695b Pl 15 59 50.9489706053 -28 03 42.309432433           ~ 230 1
4 HD 202206b Pl 21 14 57.7684954746 -20 47 21.162361638           ~ 54 1
5 HD 202206c Pl 21 14 57.7684954746 -20 47 21.162361638           ~ 41 1
6 HD 202206 PM* 21 14 57.7686051936 -20 47 21.161521320   8.79 8.07     G6V 211 1
7 BD-15 6290 BY* 22 53 16.7325836486 -14 15 49.304052185 12.928 11.749 10.192 9.013 7.462 M3.5V 933 1

To bookmark this query, right click on this link: simbad:objects in 2010A&A...519A..10C and select 'bookmark this link' or equivalent in the popup menu


2022.09.26-08:09:38

© Université de Strasbourg/CNRS

    • Contact