2010A&A...519A.117I


Query : 2010A&A...519A.117I

2010A&A...519A.117I - Astronomy and Astrophysics, volume 519, A117-117 (2010/9-1)

Accretion-disc model spectra for dwarf-nova stars.

IDAN I., LASOTA J.-P., HAMEURY J.-M. and SHAVIV G.

Abstract (from CDS):

Radiation from accretion discs in cataclysmic variable stars (CVs) provides fundamental information about the properties of these close binary systems and about the physics of accretion in general. Of particular interest are dwarf-nova outburst cycles during which variations of the disc properties allow a detailed study of the physical processes in accretion flows. The detailed diagnostics of accretion disc structure can be achieved by including in its description all the relevant heating and cooling physical mechanism, in particular the convective energy transport that, although dominant at temperatures ≲104K, is usually not taken into account when calculating spectra of accretion discs. The disc's self-consistently calculated structure and emission allow testing models of dwarf-nova outbursts and accretion-disc models in general. We constructed a radiative transfer code coupled with a code determining the disc's hydrostatic vertical structure. We have obtained for the first time a model spectra of cold, convective accretion discs. As expected, these spectra are mostly flat in the optical wavelengths with no contribution from the UV, which in quiescence must be emitted by the white dwarf. The disc structures obtained with our radiative-transfer code compare well with the solutions of equations used to describe the dwarf-nova outburst cycle according to the thermal-viscous disc instability model thus allowing the two to be combined. For high-temperature radiative discs our spectra are compatible with models obtained with Hubeny's code TLUSTY. Our code allows calculating the spectral evolution of dwarf nova stars through their whole outburst cycle, providing a new tool for testing models of accretion discs in cataclysmic variables. We show that convection plays an important role in determining the vertical disc structure and substantially affects emitted spectra when, as often the case, it is effective at optical depths τ∼1. The emergent spectrum is independent of the parameters of the convection model. We confirm that, as required by the disc instability model, quiescent discs in dwarf novae must be optically thick in their outer regions. In general, no emission lines are present in the absence of external irradiation.

Abstract Copyright:

Journal keyword(s): accretion, accretion disks - radiative transfer - stars: dwarf novae

Simbad objects: 2

goto Full paper

goto View the references in ADS

Number of rows : 2
N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2023
#notes
1 V* SS Cyg CV* 21 42 42.8034497592 +43 35 09.867842484 11.07 12.651 12.032 9.326   K5V 1277 1
2 V* IP Peg CV* 23 23 08.5362249504 +18 24 59.206884012           M2 378 0

To bookmark this query, right click on this link: simbad:objects in 2010A&A...519A.117I and select 'bookmark this link' or equivalent in the popup menu


2023.10.03-09:34:52

© Université de Strasbourg/CNRS

    • Contact